The Gutman Index and the Edge-Wiener Index of Graphs with Given Vertex-Connectivity
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 867-876.

Voir la notice de l'article provenant de la source Library of Science

The Gutman index and the edge-Wiener index have been extensively investigated particularly in the last decade. An important stream of re- search on graph indices is to bound indices in terms of the order and other parameters of given graph. In this paper we present asymptotically sharp upper bounds on the Gutman index and the edge-Wiener index for graphs of given order and vertex-connectivity κ, where κ is a constant. Our results substantially generalize and extend known results in the area.
Keywords: Gutman index, edge-Wiener index, vertex-connectivity
@article{DMGT_2016_36_4_a7,
     author = {Mazorodze, Jaya Percival and Mukwembi, Simon and Vetr{\'\i}k, Tom\'a\v{s}},
     title = {The {Gutman} {Index} and the {Edge-Wiener} {Index} of {Graphs} with {Given} {Vertex-Connectivity}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {867--876},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a7/}
}
TY  - JOUR
AU  - Mazorodze, Jaya Percival
AU  - Mukwembi, Simon
AU  - Vetrík, Tomáš
TI  - The Gutman Index and the Edge-Wiener Index of Graphs with Given Vertex-Connectivity
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 867
EP  - 876
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a7/
LA  - en
ID  - DMGT_2016_36_4_a7
ER  - 
%0 Journal Article
%A Mazorodze, Jaya Percival
%A Mukwembi, Simon
%A Vetrík, Tomáš
%T The Gutman Index and the Edge-Wiener Index of Graphs with Given Vertex-Connectivity
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 867-876
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a7/
%G en
%F DMGT_2016_36_4_a7
Mazorodze, Jaya Percival; Mukwembi, Simon; Vetrík, Tomáš. The Gutman Index and the Edge-Wiener Index of Graphs with Given Vertex-Connectivity. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 867-876. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a7/

[1] M. Azari and A. Iranmanesh, Computation of the edge Wiener indices of the sum of graphs, Ars Combin. 100 (2011) 113-128.

[2] F. Buckley, Mean distance in line graphs, Congr. Numer. 32 (1981) 153-162.

[3] P. Dankelmann, I. Gutman, S. Mukwembi and H.C. Swart, The edge-Wiener index of a graph, Discrete Math. 309 (2009) 3452-3457. doi: 10.1016/j.disc.2008.09.040

[4] A.A. Dobrynin and A.A. Kochetova, Degree distance of a graph: a degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082-1086. doi: 10.1021/ci00021a008

[5] A.A. Dobrynin and L.S. Mel’nikov, Wiener index, line graphs and the cyclomatic number, MATCH Commun. Math. Comput. Chem. 53 (2005) 209-214.

[6] L. Feng, The Gutman index of unicyclic graphs, Discrete Math. Algorithms Appl. 4 (2012) 669-708. doi: 10.1142/S1793830912500310

[7] L. Feng and W. Liu, The maximal Gutman index of bicyclic graphs, MATCH Com- mun. Math. Comput. Chem. 66 (2011) 699-708.

[8] I. Gutman, Distance of line graphs, Graph Theory Notes N. Y. 31 (1996) 49-52.

[9] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087-1089. doi: /10.1021/ci00021a009

[10] I. Gutman and L. Pavlović, More on distance of line graphs, Graph Theory Notes N. Y. 33 (1997) 14-18.

[11] M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi and S.G. Wagner, Some new results on distance-based graph invariants, European J. Combin. 30 (2009) 1149-1163. doi: 10.1016/j.ejc.2008.09.019

[12] J.P. Mazorodze, S. Mukwembi and T. Vetrík, On the Gutman index and minimum degree, Discrete Appl. Math. 173 (2014) 77-82. doi: 10.1016/j.dam.2014.04.004

[13] S. Mukwembi, On the upper bound of Gutman index of graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 343-348.

[14] M.J. Nadjafi-Arani, H. Khodashenas and A.R. Ashrafi, Relationship between edge Szeged and edge Wiener indices of graphs, Glas. Mat. Ser. III 47 (2012) 21-29. doi: 10.3336/gm.47.1.02

[15] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168. doi: 10.2307/2371086

[16] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20. doi: 10.1021/ja01193a005