Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_4_a7, author = {Mazorodze, Jaya Percival and Mukwembi, Simon and Vetr{\'\i}k, Tom\'a\v{s}}, title = {The {Gutman} {Index} and the {Edge-Wiener} {Index} of {Graphs} with {Given} {Vertex-Connectivity}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {867--876}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a7/} }
TY - JOUR AU - Mazorodze, Jaya Percival AU - Mukwembi, Simon AU - Vetrík, Tomáš TI - The Gutman Index and the Edge-Wiener Index of Graphs with Given Vertex-Connectivity JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 867 EP - 876 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a7/ LA - en ID - DMGT_2016_36_4_a7 ER -
%0 Journal Article %A Mazorodze, Jaya Percival %A Mukwembi, Simon %A Vetrík, Tomáš %T The Gutman Index and the Edge-Wiener Index of Graphs with Given Vertex-Connectivity %J Discussiones Mathematicae. Graph Theory %D 2016 %P 867-876 %V 36 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a7/ %G en %F DMGT_2016_36_4_a7
Mazorodze, Jaya Percival; Mukwembi, Simon; Vetrík, Tomáš. The Gutman Index and the Edge-Wiener Index of Graphs with Given Vertex-Connectivity. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 867-876. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a7/
[1] M. Azari and A. Iranmanesh, Computation of the edge Wiener indices of the sum of graphs, Ars Combin. 100 (2011) 113-128.
[2] F. Buckley, Mean distance in line graphs, Congr. Numer. 32 (1981) 153-162.
[3] P. Dankelmann, I. Gutman, S. Mukwembi and H.C. Swart, The edge-Wiener index of a graph, Discrete Math. 309 (2009) 3452-3457. doi: 10.1016/j.disc.2008.09.040
[4] A.A. Dobrynin and A.A. Kochetova, Degree distance of a graph: a degree analogue of the Wiener index, J. Chem. Inf. Comput. Sci. 34 (1994) 1082-1086. doi: 10.1021/ci00021a008
[5] A.A. Dobrynin and L.S. Mel’nikov, Wiener index, line graphs and the cyclomatic number, MATCH Commun. Math. Comput. Chem. 53 (2005) 209-214.
[6] L. Feng, The Gutman index of unicyclic graphs, Discrete Math. Algorithms Appl. 4 (2012) 669-708. doi: 10.1142/S1793830912500310
[7] L. Feng and W. Liu, The maximal Gutman index of bicyclic graphs, MATCH Com- mun. Math. Comput. Chem. 66 (2011) 699-708.
[8] I. Gutman, Distance of line graphs, Graph Theory Notes N. Y. 31 (1996) 49-52.
[9] I. Gutman, Selected properties of the Schultz molecular topological index, J. Chem. Inf. Comput. Sci. 34 (1994) 1087-1089. doi: /10.1021/ci00021a009
[10] I. Gutman and L. Pavlović, More on distance of line graphs, Graph Theory Notes N. Y. 33 (1997) 14-18.
[11] M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi and S.G. Wagner, Some new results on distance-based graph invariants, European J. Combin. 30 (2009) 1149-1163. doi: 10.1016/j.ejc.2008.09.019
[12] J.P. Mazorodze, S. Mukwembi and T. Vetrík, On the Gutman index and minimum degree, Discrete Appl. Math. 173 (2014) 77-82. doi: 10.1016/j.dam.2014.04.004
[13] S. Mukwembi, On the upper bound of Gutman index of graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 343-348.
[14] M.J. Nadjafi-Arani, H. Khodashenas and A.R. Ashrafi, Relationship between edge Szeged and edge Wiener indices of graphs, Glas. Mat. Ser. III 47 (2012) 21-29. doi: 10.3336/gm.47.1.02
[15] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168. doi: 10.2307/2371086
[16] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20. doi: 10.1021/ja01193a005