Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_4_a5, author = {Fan, Yi-Zheng and Tan, Ying-Ying and Peng, Xi-Xi and Liu, An-Hong}, title = {Maximizing {Spectral} {Radii} of {Uniform} {Hypergraphs} with {Few} {Edges}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {845--856}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a5/} }
TY - JOUR AU - Fan, Yi-Zheng AU - Tan, Ying-Ying AU - Peng, Xi-Xi AU - Liu, An-Hong TI - Maximizing Spectral Radii of Uniform Hypergraphs with Few Edges JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 845 EP - 856 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a5/ LA - en ID - DMGT_2016_36_4_a5 ER -
%0 Journal Article %A Fan, Yi-Zheng %A Tan, Ying-Ying %A Peng, Xi-Xi %A Liu, An-Hong %T Maximizing Spectral Radii of Uniform Hypergraphs with Few Edges %J Discussiones Mathematicae. Graph Theory %D 2016 %P 845-856 %V 36 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a5/ %G en %F DMGT_2016_36_4_a5
Fan, Yi-Zheng; Tan, Ying-Ying; Peng, Xi-Xi; Liu, An-Hong. Maximizing Spectral Radii of Uniform Hypergraphs with Few Edges. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 845-856. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a5/
[1] C. Berge, Graphs and Hypergraphs (North-Holland, New York-Amsterdam-Oxford, 1976).
[2] A. Bretto, Hypergraph Theory: An Introduction (Springer, Chambridge-Heidelberg- New York-Dordrecht-London, 2013).
[3] R.A. Brualdi and A.J. Hoffman, On the spectral radius of (0, 1)-matrices, Linear Algebra Appl. 65 (1985) 133-146. doi: 10.1016/0024-3795(85)90092-8
[4] R.A. Brualdi and E.S. Solheid, On the spectral radius of connected graphs, Publ. Inst. Math. (Beogard) (N.S.) 39 (1986) 45-54.
[5] K.C. Chang, K. Pearson and T. Zhang, Perron-Frobenius theorem for nonnegative tensors, Commun. Math. Sci. 6 (2008) 507-520. doi: 10.4310/CMS.2008.v6.n2.a12
[6] K.C. Chang, K. Pearson and T. Zhang, On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl. 350 (2009) 416-422. doi: 10.1016/j.jmaa.2008.09.067
[7] L. Collatz and U. Sinogowitz, Spektren endlicher Grafen, Abh. Math. Sem. Univ. Hamburg 21 (1957) 63-77. doi: 10.1007/BF02941924
[8] J. Cooper and A. Dutle, Spectra of uniform hypergraphs, Linear Algebra Appl. 436 (2012) 3268-3292. doi: 10.1016/j.laa.2011.11.018
[9] S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, Linear Algebra Appl. 438 (2013) 738-749. doi: 10.1016/j.laa.2011.02.042
[10] Y. Hong, On the spectra of unicyclic graph, J. East China Norm. Univ. Natur. Sci. Ed. 1 (1986) 31-34.
[11] S. Hu, L. Qi and J.-Y. Shao, Cored hypergraphs, power hypergraphs and their Lapla- cian H-eigenvalues, Linear Algebra Appl. 439 (2013) 2980-2998. doi: 10.1016/j.laa.2013.08.028
[12] H. Li, J.-Y. Shao and L. Qi,The extremal spectral radii of k-uniform supertrees, J. Comb. Optim. (2015), in press. doi: 10.1007/s10878-015-9896-4
[13] R. Merris, Degree maximal graphs are Laplacian integral, Linear Algebra Appl. 199 (1994) 381-389. doi: 10.1016/0024-3795(94)90361-1
[14] D.D. Olesky, A. Roy and P. van den Driessche, Maximal graphs and graphs with maximal spectral radius, Linear Algebra Appl. 346 (2002) 109-130. doi: 10.1016/S0024-3795(01)00504-3
[15] K. Pearson and T. Zhang, On spectral hypergraph theory of the adjacency tensor, Graphs Combin. 30 (2014) 1233-1248. doi: 10.1007/s00373-013-1340-x
[16] L. Qi, Eigenvalues of a real supersymmetric tensor, J. Symbolic Comput. 40 (2005) 1302-1324. doi: 10.1016/j.jsc.2005.05.007
[17] P. Rowlinson, On the maximal index of graphs with a prescribed number of edges, Linear Algebra Appl. 110 (1988) 43-53. doi: 10.1016/0024-3795(83)90131-3
[18] Y. Yang and Q. Yang, Further results for Perron-Frobenius theorem for nonnegative tensors, SIAM J. Matrix Anal. Appl. 31 (2010) 2517-2530. doi: 10.1137/090778766
[19] J. Zhou, L. Sun, W. Wang and C. Bu, Some spectral properties of uniform hyper- graphs, Electron. J. Combin. 21 (2014) #P4.24.