Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_4_a13, author = {Francis, P. and Raj, S. Francis}, title = {Bounds for the {b-Chromatic} {Number} of {Subgraphs} and {Edge-Deleted} {Subgraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {959--976}, publisher = {mathdoc}, volume = {36}, number = {4}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a13/} }
TY - JOUR AU - Francis, P. AU - Raj, S. Francis TI - Bounds for the b-Chromatic Number of Subgraphs and Edge-Deleted Subgraphs JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 959 EP - 976 VL - 36 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a13/ LA - en ID - DMGT_2016_36_4_a13 ER -
Francis, P.; Raj, S. Francis. Bounds for the b-Chromatic Number of Subgraphs and Edge-Deleted Subgraphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 959-976. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a13/
[1] R. Balakrishnan and S. Francis Raj, Bounds for the b-chromatic number of G − v, Discrete Appl. Math. 161 (2013) 1173-1179. doi: 10.1016/j.dam.2011.08.022
[2] D. Barth, J. Cohen and T. Faik, On the b-continuity property of graphs, Discrete Appl. Math. 155(2007) 1761-1768. doi: 10.1016/j.dam.2007.04.011
[3] M. Blidia, N.I. Eschouf and F. Maffray, b-coloring of some bipartite graphs, Aus- tralas. J. Combin. 53 (2012) 67-76.
[4] S. Corteel, M. Valencia-Pabon and J.-C. Vera, On approximating the b-chromatic number, Discrete Appl. Math. 146 (2005) 106-110. doi: 10.1016/j.dam.2004.09.006
[5] B. Effantin and H. Kheddouci, The b-chromatic number of some power graphs, Dis- crete Math. Theor. Comput. Sci. 6 (2003) 45-54.
[6] T. Faik, About the b-continuity of graph, Electron. Notes Discrete Math. 17 (2004) 151-156. doi: 10.1016/j.endm.2004.03.030
[7] T. Faik, La b-continuite des b-colorations: complexité, propriétés structurelles et algorithmes, Ph.D. Thesis (University of Paris XI Orsay, 2005).
[8] C.T. Hoàng and M. Kouider, On the b-dominating coloring of graphs, Discrete Appl. Math. 152 (2005) 176-186. doi: 10.1016/j.dam.2005.04.001
[9] R.W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete Appl.Math. 91 (1999) 127-141. doi: 10.1016/S0166-218X(98)00146-2
[10] M. Jakovac and S. Klavžar, The b-chromatic number of cubic graphs, Graphs Com- bin. 26 (2010) 107-118. doi: 10.1007/s00373-010-0898-9
[11] M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002) 267-277. doi: 10.1016/S0012-365X(01)00469-1
[12] M. Kouider and M. Zaker, Bounds for the b-chromatic number of some families of graphs, Discrete Math. 306 (2006) 617-623. doi: 10.1016/j.disc.2006.01.012
[13] J. Kratochvíl, Zs. Tuza and M. Voigt,On the b-chromatic number of graphs, Lecture Notes in Comput. Sci. 2573 (2002) 310-320. doi: 10.1007/3-540-36379-3 27
[14] F. Maffray and A. Silva, b-colouring outerplanar graphs with large girth, Discrete Math. 312 (2012) 1796-1803. doi: 10.1016/j.disc.2012.01.035