Bounds for the b-Chromatic Number of Subgraphs and Edge-Deleted Subgraphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 959-976.

Voir la notice de l'article provenant de la source Library of Science

A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. In this paper, we obtain bounds for the b- chromatic number of induced subgraphs in terms of the b-chromatic number of the original graph. This turns out to be a generalization of the result due to R. Balakrishnan et al. [Bounds for the b-chromatic number of G−v, Discrete Appl. Math. 161 (2013) 1173-1179]. Also we show that for any connected graph G and any e ∈ E(G), b(G - e) ≤ b(G) + n/2 - 2. Further, we determine all graphs which attain the upper bound. Finally, we conclude by finding bound for the b-chromatic number of any subgraph.
Keywords: b-coloring, b-chromatic number
@article{DMGT_2016_36_4_a13,
     author = {Francis, P. and Raj, S. Francis},
     title = {Bounds for the {b-Chromatic} {Number} of {Subgraphs} and {Edge-Deleted} {Subgraphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {959--976},
     publisher = {mathdoc},
     volume = {36},
     number = {4},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a13/}
}
TY  - JOUR
AU  - Francis, P.
AU  - Raj, S. Francis
TI  - Bounds for the b-Chromatic Number of Subgraphs and Edge-Deleted Subgraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 959
EP  - 976
VL  - 36
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a13/
LA  - en
ID  - DMGT_2016_36_4_a13
ER  - 
%0 Journal Article
%A Francis, P.
%A Raj, S. Francis
%T Bounds for the b-Chromatic Number of Subgraphs and Edge-Deleted Subgraphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 959-976
%V 36
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a13/
%G en
%F DMGT_2016_36_4_a13
Francis, P.; Raj, S. Francis. Bounds for the b-Chromatic Number of Subgraphs and Edge-Deleted Subgraphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 4, pp. 959-976. http://geodesic.mathdoc.fr/item/DMGT_2016_36_4_a13/

[1] R. Balakrishnan and S. Francis Raj, Bounds for the b-chromatic number of G − v, Discrete Appl. Math. 161 (2013) 1173-1179. doi: 10.1016/j.dam.2011.08.022

[2] D. Barth, J. Cohen and T. Faik, On the b-continuity property of graphs, Discrete Appl. Math. 155(2007) 1761-1768. doi: 10.1016/j.dam.2007.04.011

[3] M. Blidia, N.I. Eschouf and F. Maffray, b-coloring of some bipartite graphs, Aus- tralas. J. Combin. 53 (2012) 67-76.

[4] S. Corteel, M. Valencia-Pabon and J.-C. Vera, On approximating the b-chromatic number, Discrete Appl. Math. 146 (2005) 106-110. doi: 10.1016/j.dam.2004.09.006

[5] B. Effantin and H. Kheddouci, The b-chromatic number of some power graphs, Dis- crete Math. Theor. Comput. Sci. 6 (2003) 45-54.

[6] T. Faik, About the b-continuity of graph, Electron. Notes Discrete Math. 17 (2004) 151-156. doi: 10.1016/j.endm.2004.03.030

[7] T. Faik, La b-continuite des b-colorations: complexité, propriétés structurelles et algorithmes, Ph.D. Thesis (University of Paris XI Orsay, 2005).

[8] C.T. Hoàng and M. Kouider, On the b-dominating coloring of graphs, Discrete Appl. Math. 152 (2005) 176-186. doi: 10.1016/j.dam.2005.04.001

[9] R.W. Irving and D.F. Manlove, The b-chromatic number of a graph, Discrete Appl.Math. 91 (1999) 127-141. doi: 10.1016/S0166-218X(98)00146-2

[10] M. Jakovac and S. Klavžar, The b-chromatic number of cubic graphs, Graphs Com- bin. 26 (2010) 107-118. doi: 10.1007/s00373-010-0898-9

[11] M. Kouider and M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002) 267-277. doi: 10.1016/S0012-365X(01)00469-1

[12] M. Kouider and M. Zaker, Bounds for the b-chromatic number of some families of graphs, Discrete Math. 306 (2006) 617-623. doi: 10.1016/j.disc.2006.01.012

[13] J. Kratochvíl, Zs. Tuza and M. Voigt,On the b-chromatic number of graphs, Lecture Notes in Comput. Sci. 2573 (2002) 310-320. doi: 10.1007/3-540-36379-3 27

[14] F. Maffray and A. Silva, b-colouring outerplanar graphs with large girth, Discrete Math. 312 (2012) 1796-1803. doi: 10.1016/j.disc.2012.01.035