Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_3_a7, author = {Saito, Akira and Xiong, Liming}, title = {The {Ryj\'a\v{c}ek} {Closure} and a {Forbidden} {Subgraph}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {621--628}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a7/} }
Saito, Akira; Xiong, Liming. The Ryjáček Closure and a Forbidden Subgraph. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 621-628. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a7/
[1] G. Chartrand, L. Lesniak and P. Zhang, Graphs & Digraphs (5th Ed.) (Chapman and Hall/CRC, Boca Raton, Florida, USA, 2010).
[2] M. Jünger, W.R. Pulleyblank and G. Reinelt, On partitioning the edges of graphs into connected subgraphs, J. Graph Theory 9 (1985) 539-549. doi:10.1002/jgt.3190090416
[3] M. Las Vergnas, A note on matchings in graphs, Colloque sur la Théorie des Graphes, Cahiers Centre Études Rech. Opér. 17 (1975) 257-260.
[4] M.M. Matthews and D.P. Sumner, Hamiltonian results in K1,3-free graphs, J. Graph Theory 8 (1984) 139-146. doi:10.1002/jgt.3190080116
[5] D.J. Oberly and D.P. Sumner, Every connected, locally connected nontrivial graph with no induced claw is Hamiltonian, J. Graph Theory 3 (1979) 351-356. doi:10.1002/jgt.3190030405
[6] M.D. Plummer and A. Saito, Forbidden subgraphs and bounds on the size of a max- imum matching, J. Graph Theory 50 (2005) 1-12. doi:10.1002/jgt.20087
[7] Z. Ryjáček, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217-224. doi:10.1006/jctb.1996.1732
[8] D.P. Sumner, 1-factors and antifactor sets, J. Lond. Math. Soc. (2) 13 (1976) 351-359. doi:10.1112/jlms/s2-13.2.351
[9] C. Thomassen, Reflections on graph theory, J. Graph Theory 10 (1986) 309-324. doi:10.1002/jgt.3190100308