A New Proof that 4-Connected Planar Graphs are Hamiltonian-Connected
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 555-564
Cet article a éte moissonné depuis la source Library of Science
We prove a theorem guaranteeing special paths of faces in 2-connected plane graphs. As a corollary, we obtain a new proof of Thomassen’s theorem that every 4-connected planar graph is Hamiltonian-connected.
Keywords:
4-connected planar graph, Hamiltonian-connected, Tutte-path
@article{DMGT_2016_36_3_a3,
author = {Lu, Xiaoyun and West, Douglas B.},
title = {A {New} {Proof} that {4-Connected} {Planar} {Graphs} are {Hamiltonian-Connected}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {555--564},
year = {2016},
volume = {36},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a3/}
}
TY - JOUR AU - Lu, Xiaoyun AU - West, Douglas B. TI - A New Proof that 4-Connected Planar Graphs are Hamiltonian-Connected JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 555 EP - 564 VL - 36 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a3/ LA - en ID - DMGT_2016_36_3_a3 ER -
Lu, Xiaoyun; West, Douglas B. A New Proof that 4-Connected Planar Graphs are Hamiltonian-Connected. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 555-564. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a3/
[1] C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983) 169-176. doi:10.1002/jgt.3190070205
[2] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116. doi:10.1090/S0002-9947-1956-0081471-8
[3] H. Whitney, A theorem on graphs, Ann. of Math. 32 (1931) 378-390. doi:10.2307/1968197