A New Proof that 4-Connected Planar Graphs are Hamiltonian-Connected
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 555-564.

Voir la notice de l'article provenant de la source Library of Science

We prove a theorem guaranteeing special paths of faces in 2-connected plane graphs. As a corollary, we obtain a new proof of Thomassen’s theorem that every 4-connected planar graph is Hamiltonian-connected.
Keywords: 4-connected planar graph, Hamiltonian-connected, Tutte-path
@article{DMGT_2016_36_3_a3,
     author = {Lu, Xiaoyun and West, Douglas B.},
     title = {A {New} {Proof} that {4-Connected} {Planar} {Graphs} are {Hamiltonian-Connected}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {555--564},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a3/}
}
TY  - JOUR
AU  - Lu, Xiaoyun
AU  - West, Douglas B.
TI  - A New Proof that 4-Connected Planar Graphs are Hamiltonian-Connected
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 555
EP  - 564
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a3/
LA  - en
ID  - DMGT_2016_36_3_a3
ER  - 
%0 Journal Article
%A Lu, Xiaoyun
%A West, Douglas B.
%T A New Proof that 4-Connected Planar Graphs are Hamiltonian-Connected
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 555-564
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a3/
%G en
%F DMGT_2016_36_3_a3
Lu, Xiaoyun; West, Douglas B. A New Proof that 4-Connected Planar Graphs are Hamiltonian-Connected. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 555-564. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a3/

[1] C. Thomassen, A theorem on paths in planar graphs, J. Graph Theory 7 (1983) 169-176. doi:10.1002/jgt.3190070205

[2] W.T. Tutte, A theorem on planar graphs, Trans. Amer. Math. Soc. 82 (1956) 99-116. doi:10.1090/S0002-9947-1956-0081471-8

[3] H. Whitney, A theorem on graphs, Ann. of Math. 32 (1931) 378-390. doi:10.2307/1968197