Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_3_a17, author = {Bujt\'as, Csilla and Tuza, Zsolt}, title = {K\protect\textsubscript{3}-WORM {Colorings} of {Graphs:} {Lower} {Chromatic} {Number} and {Gaps} in the {Chromatic} {Spectrum}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {759--772}, publisher = {mathdoc}, volume = {36}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a17/} }
TY - JOUR AU - Bujtás, Csilla AU - Tuza, Zsolt TI - K3-WORM Colorings of Graphs: Lower Chromatic Number and Gaps in the Chromatic Spectrum JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 759 EP - 772 VL - 36 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a17/ LA - en ID - DMGT_2016_36_3_a17 ER -
%0 Journal Article %A Bujtás, Csilla %A Tuza, Zsolt %T K3-WORM Colorings of Graphs: Lower Chromatic Number and Gaps in the Chromatic Spectrum %J Discussiones Mathematicae. Graph Theory %D 2016 %P 759-772 %V 36 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a17/ %G en %F DMGT_2016_36_3_a17
Bujtás, Csilla; Tuza, Zsolt. K3-WORM Colorings of Graphs: Lower Chromatic Number and Gaps in the Chromatic Spectrum. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 759-772. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a17/
[1] S. Arumugam, B.K. Jose, Cs. Bujtás and Zs. Tuza, Equality of domination and transversal numbers in hypergraphs, Discrete Appl. Math. 161 (2013) 1859-1867. doi:10.1016/j.dam.2013.02.009
[2] G. Bacsó, Cs. Bujtás, Zs. Tuza and V. Voloshin, New challenges in the theory of hypergraph coloring, in: Advances in Discrete Mathematics and Applications, Ramanujan Mathematical Society Lecture Notes Series 13 (2010) 45-57.
[3] Cs. Bujtás, E. Sampathkumar, Zs. Tuza, Ch. Dominic and L. Pushpalatha, Vertex coloring without large polychromatic stars, Discrete Math. 312 (2012) 2102-2108. doi:10.1016/j.disc.2011.04.013
[4] Cs. Bujtás, E. Sampathkumar, Zs. Tuza, M.S. Subramanya and Ch. Dominic, 3- consecutive C-colorings of graphs, Discuss. Math. Graph Theory 30 (2010) 393-405. doi:10.7151/dmgt.1502
[5] Cs. Bujtás and Zs. Tuza, Maximum number of colors: C-coloring and related problems, J. Geom. 101 (2011) 83-97. doi:10.1007/s00022-011-0082-2
[6] Cs. Bujtás and Zs. Tuza, Kn-WORM colorings of graphs: Feasible sets and upper chromatic number, manuscript in preparation (2015).
[7] Cs. Bujtás, Zs. Tuza and V.I. Voloshin, Hypergraph colouring, Chapter 11 in: L.W. Beineke and R.J. Wilson, (Eds.), Topics in Chromatic Graph Theory, Encyclopedia of Mathematics and Its Applications 156 (Cambridge University Press, 2014), 230-254.
[8] W. Goddard, K. Wash and H. Xu, WORM colorings forbidding cycles or cliques, Congr. Numer. 219 (2014) 161-173.
[9] W. Goddard, K. Wash and H. Xu, WORM colorings, Discuss. Math. Graph Theory 35 (2015) 571-584. doi:10.7151/dmgt.1814
[10] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley-Interscience, 1995).
[11] A. Kündgen and R. Ramamurthi, Coloring face-hypergraphs of graphs on surfaces, J. Combin. Theory Ser. B 85 (2002) 307-337. doi:10.1006/jctb.2001.2107
[12] L. Lovász, Coverings and colorings of hypergraphs, Congr. Numer. 8 (1973) 3-12.
[13] D. Marx, The complexity of chromatic strength and chromatic edge strength, Comput. Complexity 14 (2006) 308-340. doi:10.1007/s00037-005-0201-2
[14] F. Maffray and M. Preissmann, On the NP-completeness of the k-colorability problem for triangle-free graphs, Discrete Math. 162 (1996) 313-317. doi:10.1016/S0012-365X(97)89267-9
[15] K. Ozeki, private communication, June 2015.
[16] V.I. Voloshin, The mixed hypergraphs, Comput. Sci. J. Moldova 1 (1993) 45-52.
[17] V.I. Voloshin, On the upper chromatic number of a hypergraph, Australas. J. Combin. 11 (1995) 25-45.
[18] V.I. Voloshin, Coloring Mixed Hypergraphs: Theory, Algorithms and Applications (Fields Institute Monographs 17, Amer. Math. Soc., 2002).
[19] V.I. Voloshin, Mixed hypergraph coloring web site. http://spectrum.troy.edu/voloshin/mh.html
[20] V.I. Voloshin, private communication, November 2013.