Splitting Cubic Circle Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 723-741

Voir la notice de l'article provenant de la source Library of Science

We show that every 3-regular circle graph has at least two pairs of twin vertices; consequently no such graph is prime with respect to the split decomposition. We also deduce that up to isomorphism, K4 and K3,3 are the only 3-connected, 3-regular circle graphs.
Keywords: circle graph, split decomposition, regular graph
@article{DMGT_2016_36_3_a15,
     author = {Traldi, Lorenzo},
     title = {Splitting {Cubic} {Circle} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {723--741},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a15/}
}
TY  - JOUR
AU  - Traldi, Lorenzo
TI  - Splitting Cubic Circle Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 723
EP  - 741
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a15/
LA  - en
ID  - DMGT_2016_36_3_a15
ER  - 
%0 Journal Article
%A Traldi, Lorenzo
%T Splitting Cubic Circle Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 723-741
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a15/
%G en
%F DMGT_2016_36_3_a15
Traldi, Lorenzo. Splitting Cubic Circle Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 723-741. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a15/