Splitting Cubic Circle Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 723-741.

Voir la notice de l'article provenant de la source Library of Science

We show that every 3-regular circle graph has at least two pairs of twin vertices; consequently no such graph is prime with respect to the split decomposition. We also deduce that up to isomorphism, K4 and K3,3 are the only 3-connected, 3-regular circle graphs.
Keywords: circle graph, split decomposition, regular graph
@article{DMGT_2016_36_3_a15,
     author = {Traldi, Lorenzo},
     title = {Splitting {Cubic} {Circle} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {723--741},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a15/}
}
TY  - JOUR
AU  - Traldi, Lorenzo
TI  - Splitting Cubic Circle Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 723
EP  - 741
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a15/
LA  - en
ID  - DMGT_2016_36_3_a15
ER  - 
%0 Journal Article
%A Traldi, Lorenzo
%T Splitting Cubic Circle Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 723-741
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a15/
%G en
%F DMGT_2016_36_3_a15
Traldi, Lorenzo. Splitting Cubic Circle Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 723-741. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a15/

[1] F. Bonomo, G. Durán, L.N. Grippo and M.D. Safe, Partial characterizations of circle graphs, Discrete Appl. Math. 159 (2011) 1699-1706. doi:10.1016/j.dam.2010.06.020

[2] A. Bouchet, Caractérisation des symboles croisés de genre nul, C.R. Acad. Sci. Paris Śer. A-B 274 (1972) A724-A727.

[3] A. Bouchet, Reducing prime graphs and recognizing circle graphs, Combinatorica 7 (1987) 243-254. doi:10.1007/BF02579301

[4] A. Bouchet, Circle graph obstructions, J. Combin. Theory Ser. B 60 (1994) 107-144. doi:10.1006/jctb.1994.1008

[5] H.R. Brahana, Systems of circuits on two-dimensional manifolds, Ann. of Math. 23 (1921) 144-168. doi:10.2307/1968030

[6] M. Cohn and A. Lempel, Cycle decomposition by disjoint transpositions, J. Combin. Theory Ser. A 13 (1972) 83-89. doi:10.1016/0097-3165(72)90010-6

[7] B. Courcelle, Circle graphs and monadic second-order logic, J. Appl. Log. 6 (2008) 416-442. doi:10.1016/j.jal.2007.05.001

[8] W.H. Cunningham, Decomposition of directed graphs, SIAM J. Alg. Disc. Meth. 3 (1982) 214-228. doi:10.1137/0603021

[9] J. Daligault, D. Gonçalves and M. Rao, Diamond-free circle graphs are Helly circle, Discrete Math. 310 (2010) 845-849. doi:10.1016/j.disc.2009.09.022

[10] S. Even and A. Itai, Queues, stacks, and graphs, in: Theory of Machines and Computations, Proc. Internat. Sympos., Technion, Haifa, 1971, Z. Kohavi and A. Paz (Ed(s)), (Academic Press, New York, 1971) 71-86. doi:10.1016/b978-0-12-417750-5.50011-7

[11] L. Ghier, Double occurrence words with the same alternance graph, Ars Combin. 36 (1993) 57-64.

[12] E. Gioan, C. Paul, M. Tedder and D. Corneil, Practical and efficient circle graph recognition, Algorithmica 69 (2014) 759-788. doi:10.1007/s00453-013-9745-8

[13] E. Gioan, C. Paul, M. Tedder and D. Corneil, Practical and efficient split decompo- sition via graph-labelled trees, Algorithmica 69 (2014) 789-843. doi:10.1007/s00453-013-9752-9

[14] M.C. Golumbic, Algorithmic Graph Theory and Perfect Graphs (Academic Press, New York, 1980).

[15] A. Kotzig, Eulerian lines in finite 4-valent graphs and their transformations, in: Theory of Graphs, Proc. Colloq., Tihany, 1966, P. Erdős and G. Katona (Ed(s)), (Academic Press, New York, 1968) 219-230.

[16] W. Naji, Reconnaissance des graphes de cordes, Discrete Math. 54 (1985) 329-337. doi:10.1016/0012-365X(85)90117-7

[17] R.C. Read and P. Rosenstiehl, On the Gauss crossing problem, in: Combina- torics (Proc. Fifth Hungarian Colloq., Keszthely, 1976), Vol. II, Colloq. Math. Soc. János Bolyai, 18, A. Hajnal and V.T. Śos (Ed(s)), (North-Holland Publishing Co., Amsterdam-New York, 1978) 843-876.

[18] J. Spinrad, Recognition of circle graphs, J. Algorithms 16 (1994) 264-282. doi:10.1006/jagm.1994.1012

[19] B. Zelinka, The graph of the system of chords of a given circle, Mat.-Fyz. Časopis Sloven. Akad. Vied 15 (1965) 273-279.