Cycle Double Covers of Infinite Planar Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 523-544.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we study the existence of cycle double covers for infinite planar graphs. We show that every infinite locally finite bridgeless k-indivisible graph with a 2-basis admits a cycle double cover.
Keywords: cycle double cover, infinite planar graph
@article{DMGT_2016_36_3_a1,
     author = {Javaheri, Mohammad},
     title = {Cycle {Double} {Covers} of {Infinite} {Planar} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {523--544},
     publisher = {mathdoc},
     volume = {36},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a1/}
}
TY  - JOUR
AU  - Javaheri, Mohammad
TI  - Cycle Double Covers of Infinite Planar Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 523
EP  - 544
VL  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a1/
LA  - en
ID  - DMGT_2016_36_3_a1
ER  - 
%0 Journal Article
%A Javaheri, Mohammad
%T Cycle Double Covers of Infinite Planar Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 523-544
%V 36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a1/
%G en
%F DMGT_2016_36_3_a1
Javaheri, Mohammad. Cycle Double Covers of Infinite Planar Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 3, pp. 523-544. http://geodesic.mathdoc.fr/item/DMGT_2016_36_3_a1/

[1] J.C. Bermond, B. Jackson and F. Jaeger, Shortest coverings of graphs with cycles, J. Combin. Theory Ser. B 35 (1993) 297-308. doi:10.1016/0095-8956(83)90056-4

[2] G. Brinkmann, J. Goedgebeur, J. Hägglund and K. Markström, Generation and properties of snarks, J. Combin. Theory Ser. B 103 (2013) 468-488. doi:10.1016/j.jctb.2013.05.001

[3] H. Bruhn and M. Stein, MacLane’s planarity criterion for locally finite graphs, J. Combin. Theory Ser. B 96 (2006) 225-239. doi:10.1016/j.jctb.2005.07.005

[4] M. Chan, A survey of the cycle double cover conjecture, (2009).

[5] N.G. de Bruijn and P. Erdős, A colour problem for infinite graphs and a problem in the theory of relations, Nederl. Akad. Wetensch. Porc. Ser. A 54 (1951) 369-373.

[6] R. Diestel, The cycle space of an infinite graph, Combin. Probab. Comput. 14 (2005) 59-79. doi:10.1017/S0963548304006686

[7] R. Diestel and D. Kühl, On infinite cycles I, Combinatorica 24 (2004) 69-89. doi:10.1007/s00493-004-0005-z

[8] R. Diestel and D. Kühl, On infinite cycles II, Combinatorica 24 (2004) 91-116. doi:10.1007/s00493-004-0006-y

[9] G. Fan, Covering graphs by cycles, SIAM J. Discrete Math. 5 (1992) 491-496. doi:10.1137/0405039

[10] I. Fary, On straight line representations of planar graphs, Acta Sci. Math. (Szeged) 11 (1984) 229-233.

[11] H. Fleischner, Proof of the strong 2-cover conjecture for planar graphs, J. Combin. Theory Ser. B 40 (1986) 229-230. doi:10.1016/0095-8956(86)90080-8

[12] H. Fleischner and R. Häggkvist, Circuit double covers in special types of cubic graphs, Discrete Math. 309 (2009) 5724-5728. doi:10.1016/j.disc.2008.05.018

[13] L. Goddyn, A girth requirement for the double cycle cover conjecture, Ann. Discrete Math. 27 (1985) 13-26. doi:10.1016/s0304-0208(08)72994-3

[14] J. Hägglund and K. Markström, On stable cycles and cycle double covers of graphs with large circumference, Discrete Math. 312 (2012) 2540-2544. doi:10.1016/j.disc.2011.08.024

[15] A. Hoffmann-Ostenhof, A note on 5-cycle double covers, Graphs Combin. 29 (2013) 977-979. doi:10.1007/s00373-012-1169-8

[16] A. Huck, Reducible configurations for the cycle double cover conjecture, Discrete Appl. Math. 99 (2000) 71-90. doi:10.1016/S0166-218X(99)00126-2

[17] R. Isaacs, Infinite families of nontrivial trivalent graphs which are not Tait colorable, Amer. Math. Monthly 82 (1975) 221-239. doi:10.2307/2319844

[18] F. Jaeger, A survey of the cycle double cover conjecture, Ann. Discrete Math. 27 (1985) 1-12. doi:10.1016/s0304-0208(08)72993-1

[19] F. Jaeger, On circular flows in graphs, Proc. Colloq. Math. Janos Bolyai (1982) 391-402.

[20] S. MacLane, A combinatorial condition for planar graphs, Fund. Math. 28 (1937) 22-32.

[21] P.D. Seymour, Disjoint paths in graphs, Discrete Math. 29 (1980) 293-309. doi:10.1016/0012-365X(80)90158-2

[22] P.D. Seymour, Nowhere-zero 6-flows, J. Combin. Theory Ser. B 30 (1981) 130-135. doi:10.1016/0095-8956(81)90058-7

[23] G. Szekeres, Polyhedral decompositions of cubic graphs, Bull. Aust. Math. Soc. 8 (1973) 367-387. doi:10.1017/S0004972700042660

[24] P.G. Tait, Remarks on the colourings of maps, Proc. Roy. Soc. Edinburgh Sect. A 10 (1880) 729.

[25] C. Thomassen, Planarity and duality of finite and infinite graphs, J. Combin. Theory Ser. B 29 (1980) 244-271. doi:10.1016/0095-8956(80)90083-0

[26] C. Thomassen, Straight line representation of infinite planar graphs, J. Lond. Math. Soc. (2) 16 (1977) 411-423. doi:10.1112/jlms/s2-16.3.411

[27] W.T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954) 80-91. doi:10.4153/CJM-1954-010-9

[28] K. Wagner, Fastplättbare Graphen, J. Combin. Theory 3 (1967) 326-365. doi:10.1016/S0021-9800(67)80103-0

[29] R. Xu, Strong 5-cycle double covers of graphs, Graphs Combin. 30 (2014) 495-499. doi:10.1007/s00373-012-1266-8

[30] D. Ye, Perfect Matching and Circuit Cover of Graphs (Ph.D. Dissertation, West Virginia University, 2012).