Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 383-392.

Voir la notice de l'article provenant de la source Library of Science

Let G be a graph on n vertices. A vertex of G with degree at least n/2 is called a heavy vertex, and a cycle of G which contains all the heavy vertices of G is called a heavy cycle. In this note, we characterize graphs which contain no heavy cycles. For a given graph H, we say that G is H-heavy if every induced subgraph of G isomorphic to H contains two nonadjacent vertices with degree sum at least n. We find all the connected graphs S such that a 2-connected graph G being S-heavy implies any longest cycle of G is a heavy cycle.
Keywords: heavy cycles, heavy subgraphs
@article{DMGT_2016_36_2_a9,
     author = {Lia, Binlong and Zhang, Shenggui},
     title = {Heavy {Subgraph} {Conditions} for {Longest} {Cycles} to {Be} {Heavy} in {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {383--392},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a9/}
}
TY  - JOUR
AU  - Lia, Binlong
AU  - Zhang, Shenggui
TI  - Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 383
EP  - 392
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a9/
LA  - en
ID  - DMGT_2016_36_2_a9
ER  - 
%0 Journal Article
%A Lia, Binlong
%A Zhang, Shenggui
%T Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 383-392
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a9/
%G en
%F DMGT_2016_36_2_a9
Lia, Binlong; Zhang, Shenggui. Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 383-392. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a9/

[1] B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993) 147-155. doi:10.1007/BF01303200

[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, Lon- don and Elsevier, New York, 1976). doi:10.1007/978-1-349-03521-2

[3] G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1984) 221-227. doi:10.1016/0095-8956(84)90054-6

[4] R. Shi, 2-neighborhoods and hamiltonian conditions, J. Graph Theory 16 (1992) 267-271. doi:10.1002/jgt.3190160310