Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 383-392
Cet article a éte moissonné depuis la source Library of Science
Let G be a graph on n vertices. A vertex of G with degree at least n/2 is called a heavy vertex, and a cycle of G which contains all the heavy vertices of G is called a heavy cycle. In this note, we characterize graphs which contain no heavy cycles. For a given graph H, we say that G is H-heavy if every induced subgraph of G isomorphic to H contains two nonadjacent vertices with degree sum at least n. We find all the connected graphs S such that a 2-connected graph G being S-heavy implies any longest cycle of G is a heavy cycle.
Keywords:
heavy cycles, heavy subgraphs
@article{DMGT_2016_36_2_a9,
author = {Lia, Binlong and Zhang, Shenggui},
title = {Heavy {Subgraph} {Conditions} for {Longest} {Cycles} to {Be} {Heavy} in {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {383--392},
year = {2016},
volume = {36},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a9/}
}
TY - JOUR AU - Lia, Binlong AU - Zhang, Shenggui TI - Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 383 EP - 392 VL - 36 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a9/ LA - en ID - DMGT_2016_36_2_a9 ER -
Lia, Binlong; Zhang, Shenggui. Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 383-392. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a9/
[1] B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993) 147-155. doi:10.1007/BF01303200
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, Lon- don and Elsevier, New York, 1976). doi:10.1007/978-1-349-03521-2
[3] G. Fan, New sufficient conditions for cycles in graphs, J. Combin. Theory Ser. B 37 (1984) 221-227. doi:10.1016/0095-8956(84)90054-6
[4] R. Shi, 2-neighborhoods and hamiltonian conditions, J. Graph Theory 16 (1992) 267-271. doi:10.1002/jgt.3190160310