New Bounds on the Signed Total Domination Number of Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 467-477.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we study the signed total domination number in graphs and present new sharp lower and upper bounds for this parameter. For example by making use of the classic theorem of Turán [8], we present a sharp lower bound on K_r+1-free graphs for r ≥ 2. Applying the concept of total limited packing we bound the signed total domination number of G with δ (G) ≥ 3 from above by n - 2 2 ρ_0 (G) + δ - 3 / 2. Also, we prove that γ_st (T) ≤ n − 2(s − s^′ ) for any tree T of order n, with s support vertices and s^′ support vertices of degree two. Moreover, we characterize all trees attaining this bound.
Keywords: open packing, signed total domination number, total limited packing, tuple total domination number
@article{DMGT_2016_36_2_a16,
     author = {Moghaddam, Seyyed Mehdi Hosseini and Mojdeh, Doost Ali and Samadi, Babak and Volkmann, Lutz},
     title = {New {Bounds} on the {Signed} {Total} {Domination} {Number} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {467--477},
     publisher = {mathdoc},
     volume = {36},
     number = {2},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a16/}
}
TY  - JOUR
AU  - Moghaddam, Seyyed Mehdi Hosseini
AU  - Mojdeh, Doost Ali
AU  - Samadi, Babak
AU  - Volkmann, Lutz
TI  - New Bounds on the Signed Total Domination Number of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 467
EP  - 477
VL  - 36
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a16/
LA  - en
ID  - DMGT_2016_36_2_a16
ER  - 
%0 Journal Article
%A Moghaddam, Seyyed Mehdi Hosseini
%A Mojdeh, Doost Ali
%A Samadi, Babak
%A Volkmann, Lutz
%T New Bounds on the Signed Total Domination Number of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 467-477
%V 36
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a16/
%G en
%F DMGT_2016_36_2_a16
Moghaddam, Seyyed Mehdi Hosseini; Mojdeh, Doost Ali; Samadi, Babak; Volkmann, Lutz. New Bounds on the Signed Total Domination Number of Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 467-477. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a16/

[1] R. Gallant, G. Gunther, B. Hartnell and D.F. Rall, Limited packing in graphs, Dis- crete Appl. Math. 158 (2010) 1357-1364. doi:10.1016/j.dam.2009.04.014

[2] M.A. Henning, Signed total domination in graphs, Discrete Math. 278 (2004) 109-125. doi:10.1016/j.disc.2003.06.002

[3] M.A. Henning and A.P. Kazemi, k-tuple total domination in graphs, Discrete Appl. Math. 158 (2010) 1006-1011. doi:10.1016/j.dam.2010.01.009

[4] M.A. Henning and P.J. Slater, Open packing in graphs, J. Combin. Math. Combin. Comput. 28 (1999) 5-18.

[5] M.A. Henning and A. Yeo, Strong transversals in hypergraphs and double total domination in graphs, SIAM J. Discrete Math. 24 (2010) 1336-1355. doi:10.1137/090777001

[6] D.A. Mojdeh, B. Samadi and S.M. Hosseini Moghaddam, Limited packing vs tuple domination in graphs, Ars Combin. (to appear).

[7] E. Shan and T.C.E. Cheng, Remarks on the minus (signed) total domination in graphs, Discrete Math. 308 (2008) 3373-3380. doi:10.1016/j.disc.2007.06.015

[8] P. Turán, On an extremal problem in graph theory, Math. Fiz. Lapok 48 (1941) 436-452.

[9] D.B. West, Introduction to Graph Theory (Second Edition, Prentice Hall, USA, 2001).

[10] B. Zelinka, Signed total domination number of a graph, Czechoslovak Math. J. 51 (2001) 225-229. doi:10.1023/A:1013782511179

[11] W. Zhao, H. Wang and G. Xu, Total k-domination number in graphs, Int. J. Pure Appl. Math. 35 (2007) 235-242.