Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_2_a13, author = {Henning, Michael A. and L\"owenstein, Christian}, title = {A {Characterization} of {Hypergraphs} with {Large} {Domination} {Number}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {427--438}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a13/} }
TY - JOUR AU - Henning, Michael A. AU - Löwenstein, Christian TI - A Characterization of Hypergraphs with Large Domination Number JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 427 EP - 438 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a13/ LA - en ID - DMGT_2016_36_2_a13 ER -
Henning, Michael A.; Löwenstein, Christian. A Characterization of Hypergraphs with Large Domination Number. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 427-438. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a13/
[1] B.D. Acharya, Domination in hypergraphs, AKCE Int. J. Graphs Comb. 4 (2007) 117-126.
[2] B.D. Acharya, Domination in hypergraphs II. New directions, in: Proc. Int. Conf. ICDM 2008, Mysore, India, 1-16.
[3] B.D. Acharya and P. Gupta, Weak edge-degree domination in hypergraphs, Czechoslovak Math. J. 56 (131) (2006) 99-108. doi:10.1007/s10587-006-0008-6
[4] Cs. Bujtás, M.A. Henning and Zs. Tuza, Transversals and domination in uniform hypergraphs, European J. Combin. 33 (2012) 62-71. doi:10.1016/j.ejc.2011.08.002
[5] V. Chvátal and C. McDiarmid, Small transversals in hypergraphs, Combinatorica 12 (1992) 19-26. doi:10.1007/BF01191201
[6] M.A. Henning, I. Schiermeyer and A. Yeo, A new bound on the domination number of graphs with minimum degree two, Electron. J. Combin. 18 (2011) #P12.
[7] M.A. Henning and A. Yeo, Hypergraphs with large transversal number and with edge sizes at least three, J. Graph Theory 59 (2008) 326-348. doi:10.1002/jgt.20340
[8] M.A. Henning and C. Löwenstein, Hypergraphs with large domination number and edge sizes at least 3, Discrete Applied Math. 160 (2012) 1757-1765. doi:/10.1016/j.dam.2012.03.023
[9] M.A. Henning and C. Löwenstein, Hypergraphs with large transversal number and with edge sizes at least four, Cent. Eur. J. Math. 10 (2012) 1133-1140. doi:10.2478/s11533-012-0023-9
[10] M.A. Henning and C. Löwenstein, A characterization of hypergraphs that achieve equality in the Chvátal-McDiarmid Theorem, Discrete Math. 323 (2014) 69-75. doi:10.1016/j.disc.2014.01.014
[11] T. Honjo, K. Kawarabayashi and A. Nakamoto, Dominating sets in triangulations on surfaces, J. Graph Theory 63 (2010) 17-30. doi:10.1002/jgt.20401
[12] B.K. Jose and Zs. Tuza, Hypergraph domination and strong independence, Appl. Anal. Discrete Math. 3 (2009) 237-358. doi:10.2298/AADM0902347J
[13] F.C. Lai and G.J. Chang, An upper bound for the transversal numbers of 4-uniform hypergraphs, J. Combin. Theory Ser. B 50 (1990) 129-133. doi:10.1016/0095-8956(90)90101-5
[14] C. Löwenstein and D. Rautenbach, Domination in graphs of minimum degree at least two and large girth, Graphs Combin. 24 (2008) 37-46. doi:10.1007/s00373-007-0770-8