Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_2_a11, author = {Zhou, Sizhong and Yang, Fan and Sun, Zhiren}, title = {A {Neighborhood} {Condition} for {Fractional} {ID-[A,} {B]-Factor-Critical} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {409--418}, publisher = {mathdoc}, volume = {36}, number = {2}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a11/} }
TY - JOUR AU - Zhou, Sizhong AU - Yang, Fan AU - Sun, Zhiren TI - A Neighborhood Condition for Fractional ID-[A, B]-Factor-Critical Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 409 EP - 418 VL - 36 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a11/ LA - en ID - DMGT_2016_36_2_a11 ER -
%0 Journal Article %A Zhou, Sizhong %A Yang, Fan %A Sun, Zhiren %T A Neighborhood Condition for Fractional ID-[A, B]-Factor-Critical Graphs %J Discussiones Mathematicae. Graph Theory %D 2016 %P 409-418 %V 36 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a11/ %G en %F DMGT_2016_36_2_a11
Zhou, Sizhong; Yang, Fan; Sun, Zhiren. A Neighborhood Condition for Fractional ID-[A, B]-Factor-Critical Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 2, pp. 409-418. http://geodesic.mathdoc.fr/item/DMGT_2016_36_2_a11/
[1] S. Zhou, Z. Sun and H. Liu, A minimum degree condition for fractional ID-[a, b]- factor-critical graphs, Bull. Aust. Math. Soc. 86 (2012) 177-183. doi:10.1017/S0004972711003467
[2] H. Matsuda, A neighborhood condition for graphs to have [a, b]-factors, Discrete Math. 224 (2000) 289-292. doi:10.1016/S0012-365X(00)00140-0
[3] J. Ekstein, P. Holub, T. Kaiser, L. Xiong and S. Zhang, Star subdivisions and con- nected even factors in the square of a graph, Discrete Math. 312 (2012) 2574-2578. doi:10.1016/j.disc.2011.09.004
[4] H. Lu, Simplified existence theorems on all fractional [a, b]-factors, Discrete Appl. Math. 161 (2013) 2075-2078. doi:10.1016/j.dam.2013.02.006
[5] S. Zhou, Independence number, connectivity and (a, b, k)-critical graphs, Discrete Math. 309 (2009) 4144-4148. doi:10.1016/j.disc.2008.12.013
[6] S. Zhou, A sufficient condition for graphs to be fractional (k,m)-deleted graphs, Appl. Math. Lett. 24 (2011) 1533-1538. doi:10.1016/j.aml.2011.03.041
[7] S. Zhou and H. Liu, Neighborhood conditions and fractional k-factors, Bull. Malays. Math. Sci. Soc. 32 (2009) 37-45.
[8] K. Kimura, f-factors, complete-factors, and component-deleted subgraphs, Discrete Math. 313 (2013) 1452-1463. doi:10.1016/j.disc.2013.03.009
[9] M. Kouider and Z. Lonc, Stability number and [a, b]-factors in graphs, J. Graph Theory 46 (2004) 254-264. doi:10.1002/jgt.20008
[10] R. Chang, G. Liu and Y. Zhu, Degree conditions of fractional ID-k-factor-critical graphs, Bull. Malays. Math. Sci. Soc. 33 (2010) 355-360.
[11] S. Zhou, Q. Bian and J. Wu, A result on fractional ID-k-factor-critical graphs, J. Combin. Math. Combin. Comput. 87 (2013) 229-236.
[12] S. Zhou, Binding numbers for fractional ID-k-factor-critical graphs, Acta Math. Sin. Engl. Ser. 30 (2014) 181-186. doi:10.1007/s10114-013-1396-9
[13] G. Liu and L. Zhang, Fractional (g, f)-factors of graphs, Acta Math. Sci. Ser. B 21 (2001) 541-545.