Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2016_36_1_a9, author = {Adiga, Chandrashekar and Rakshith, B.R.}, title = {On {Spectra} {Of} {Variants} {Of} {The} {Corona} {Of} {Two} {Graphs} {And} {Some} {New} {Equienergetic} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {127--140}, publisher = {mathdoc}, volume = {36}, number = {1}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a9/} }
TY - JOUR AU - Adiga, Chandrashekar AU - Rakshith, B.R. TI - On Spectra Of Variants Of The Corona Of Two Graphs And Some New Equienergetic Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 127 EP - 140 VL - 36 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a9/ LA - en ID - DMGT_2016_36_1_a9 ER -
%0 Journal Article %A Adiga, Chandrashekar %A Rakshith, B.R. %T On Spectra Of Variants Of The Corona Of Two Graphs And Some New Equienergetic Graphs %J Discussiones Mathematicae. Graph Theory %D 2016 %P 127-140 %V 36 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a9/ %G en %F DMGT_2016_36_1_a9
Adiga, Chandrashekar; Rakshith, B.R. On Spectra Of Variants Of The Corona Of Two Graphs And Some New Equienergetic Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 127-140. http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a9/
[1] C. Adiga, R. Balakrishnan and W. So, The skew energy of a digraph, Linear Algebra Appl. 432 (2010) 1825–1835. doi:10.1016/j.laa.2009.11.034
[2] R. Balakrishnan, The energy of a graph, Linear Algebra Appl. 387 (2004) 287–295. doi:10.1016/j.laa.2004.02.038
[3] R.B. Bapat, Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc. 1 (2004) 129–132.
[4] S. Barik, S. Pati and B.K. Sarma, The spectrum of the corona of two graphs, SIAM J. Discrete Math. 21 (2007) 47–56. doi:10.1137/050624029
[5] S.B. Bozkurt, A.D. Gungor and I. Gutman, Note on distance energy of graphs, MATCH. Commun. Math. Comput. Chem. 64 (2010) 129–134.
[6] V. Brankov, D. Stevanović and I. Gutman, Equienergetic chemical trees, J. Serb. Chem. Soc. 69 (2004) 549–553. doi:10.2298/JSC0407549B
[7] S.-Y. Cui and G.-X. Tian, The spectrum and the signless Laplacian spectrum of coronae, Linear Algebra Appl. 437 (2012) 1692–1703. doi:10.1016/j.laa.2012.05.019
[8] D. Cvetković, M. Doob and H. Sachs, Spectra of Graphs: Theory and Application (Academic Press, New York, 1980).
[9] W.L. Ferrar, A Text-Book of Determinants, Matrices and Algebraic Forms (Oxford University Press, 1953).
[10] R. Frucht and F. Harary, On the corona of two graphs, Aequationes Math. 4 (1970) 322–325. doi:10.1007/BF01844162
[11] S. Gong, X. Li, G. Xu, I. Gutman and B. Furtula, Borderenergetic graphs, MATCH Commun. Math. Comput. Chem. 74 (2015) 321–332.
[12] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forschungsz. Graz 103 (1978) 1–22.
[13] I. Gutman, The energy of a graph: old and new results, in: Algebraic Combinatorics and Applications, A. Betten, A. Kohnert, R. Laue and A. Wassermann (Ed(s)), (Berlin, Springer, 2000) 196–211.
[14] I. Gutman, Topology and stability of conjugated hydrocarbons. The dependence of total π-electron energy on molecular topology, J. Serb. Chem. Soc. 70 (2005) 441–456. doi:10.2298/JSC0503441G
[15] I. Gutman, D. Kiani, M. Mirzakhah and B. Zhou, On incidence energy of a graph, Linear Algebra Appl. 431 (2009) 1223–1233. doi:10.1016/j.laa.2009.04.019
[16] Y. Hou and W.-C. Shiu, The spectrum of the edge corona of two graphs, Electron. J. Linear Algebra 20 (2010) 586–594. doi:10.13001/1081-3810.1395
[17] G. Indulal, The spectrum of neighborhood corona of graphs, Kragujevac J. Math. 35 (2011) 493–500.
[18] G. Indulal and A. Vijayakumar, On a pair of equienergetic graphs, MATCH. Commun. Math. Comput. Chem. 55 (2006) 83–90.
[19] X. Li, Y. Shi and I. Gutman, Graph Energy (Springer, New York, 2012). doi:10.1007/978-1-4614-4220-2
[20] X. Li, M. Wei and S. Gong, A computer search for the borderenergetic graphs of order 10, MATCH Commun. Math. Comput. Chem. 74 (2015) 333–342.
[21] B. Liu, Y. Huang and Z. You, A survey on the Laplacian-energy-like invariant, MATCH. Commun. Math. Comput. Chem. 66 (2011) 713–730.
[22] J. Liu and B. Liu, On a pair of equienergetic graphs, MATCH. Commun. Math. Comput. Chem. 59 (2008) 275–278.
[23] X. Liu and S. Zhou, Spectra of the neighbourhood corona of two graphs, Linear Multilinear Algebra 62 (2014) 1205–1219. doi:10.1080/03081087.2013.816304
[24] C. McLeman and E. McNicholas, Spectra of coronae, Linear Algebra Appl. 435 (2011) 998–1007. doi:10.1016/j.laa.2011.02.007
[25] H.S. Ramane, I. Gutman, H.B. Walikar and S.B. Halkarni, Equienergetic complement graphs, Kragujevac J. Sci. 27 (2005) 67–74.
[26] H.S. Ramane and H.B. Walikar, Construction of equienergetic graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 203–210.
[27] D. Stevanović, Energy and NEPS of graphs, Linear Multilinear Algebra 53 (2005) 67–74. doi:10.1080/03081080410001714705
[28] D. Stevanović and I. Stanković, Remarks on hyperenergetic circulant graphs, Linear Algebra Appl. 400 (2005) 345–348. doi:10.1016/j.laa.2005.01.001
[29] L. Xu and Y. Hou, Equienergetic bipartite graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 363–370.