@article{DMGT_2016_36_1_a5,
author = {Henning, Michael A. and Marcon, Alister J.},
title = {Vertices {Contained} {In} {All} {Or} {In} {No} {Minimum} {Semitotal} {Dominating} {Set} {Of} {A} {Tree}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {71--93},
year = {2016},
volume = {36},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a5/}
}
TY - JOUR AU - Henning, Michael A. AU - Marcon, Alister J. TI - Vertices Contained In All Or In No Minimum Semitotal Dominating Set Of A Tree JO - Discussiones Mathematicae. Graph Theory PY - 2016 SP - 71 EP - 93 VL - 36 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a5/ LA - en ID - DMGT_2016_36_1_a5 ER -
Henning, Michael A.; Marcon, Alister J. Vertices Contained In All Or In No Minimum Semitotal Dominating Set Of A Tree. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 71-93. http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a5/
[1] M. Blidia, M. Chellali and S. Khelifi, Vertices belonging to all or no minimum double dominating sets in trees, AKCE Int. J. Graphs. Comb. 2 (2005) 1–9.
[2] E.J. Cockayne, M.A. Henning and C.M. Mynhardt, Vertices contained in all or in no minimum total dominating set of a tree, Discrete Math. 260 (2003) 37–44. doi:10.1016/S0012-365X(02)00447-8
[3] W. Goddard, M.A. Henning and C.A. McPillan, Semitotal domination in graphs, Util. Math. 94 (2014) 67–81.
[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).
[5] M.A. Henning, Recent results on total domination in graphs: A survey, Discrete Math. 309 (2009) 32–63. doi:10.1016/j.disc.2007.12.044
[6] M.A. Henning and A.J. Marcon, On matching and semitotal domination in graphs, Discrete Math. 324 (2014) 13–18. doi:10.1016/j.disc.2014.01.021
[7] M.A. Henning and A.J. Marcon, Semitotal domination in graphs: Partition and algorithmic results, Util. Math., to appear.
[8] M.A. Henning and M.D. Plummer, Vertices contained in all or in no minimum paired-dominating set of a tree, J. Comb. Optim. 10 (2005) 283–294. doi:10.1007/s10878-005-4107-3
[9] M.A. Henning and A. Yeo, Total domination in graphs (Springer Monographs in Mathematics, 2013).
[10] C.M. Mynhardt, Vertices contained in every minimum dominating set of a tree, J. Graph Theory 31 (1999) 163–177. doi:10.1002/(SICI)1097-0118(199907)31:3〈163::AID-JGT2〉3.0.CO;2-T