M2-Edge Colorings Of Cacti And Graph Joins
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 59-69.

Voir la notice de l'article provenant de la source Library of Science

An edge coloring φ of a graph G is called an M2-edge coloring if |φ(v)| ≤ 2 for every vertex v of G, where φ(v) is the set of colors of edges incident with v. Let K2(G) denote the maximum number of colors used in an M2-edge coloring of G. In this paper we determine K2(G) for trees, cacti, complete multipartite graphs and graph joins.
Keywords: cactus, edge coloring, graph join
@article{DMGT_2016_36_1_a4,
     author = {Czap, J\'ulius and \v{S}ugerek, Peter and Ivan\v{c}o, Jaroslav},
     title = {M\protect\textsubscript{2}-Edge {Colorings} {Of} {Cacti} {And} {Graph} {Joins}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {59--69},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a4/}
}
TY  - JOUR
AU  - Czap, Július
AU  - Šugerek, Peter
AU  - Ivančo, Jaroslav
TI  - M2-Edge Colorings Of Cacti And Graph Joins
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 59
EP  - 69
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a4/
LA  - en
ID  - DMGT_2016_36_1_a4
ER  - 
%0 Journal Article
%A Czap, Július
%A Šugerek, Peter
%A Ivančo, Jaroslav
%T M2-Edge Colorings Of Cacti And Graph Joins
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 59-69
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a4/
%G en
%F DMGT_2016_36_1_a4
Czap, Július; Šugerek, Peter; Ivančo, Jaroslav. M2-Edge Colorings Of Cacti And Graph Joins. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 59-69. http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a4/

[1] K. Budajová and J. Czap, M2-edge coloring and maximum matching of graphs, Int. J. Pure Appl. Math. 88 (2013) 161–167. doi:10.12732/ijpam.v88i2.1

[2] H. Choi and S.L. Hakimi, Scheduling file transfers for trees and odd cycles, SIAM J. Comput. 16 (1987) 162–168. doi:10.1137/0216013

[3] E.G. Co man Jr., M.R. Garey, D.S. Johnson and A.S. LaPaugh, Scheduling file transfers, SIAM J. Comput. 14 (1985) 744–780. doi:10.1137/0214054

[4] J. Czap, Mi-edge colorings of graphs, Appl. Math. Sciences 5 (2011) 2437–2442. doi:10.12988/ams

[5] J. Czap, A note on M2-edge colorings of graphs, Opuscula Math. 35 (2015) 287–291. doi:10.7494/OpMath.2015.35.3.287

[6] M. Gionfriddo, L. Milazzo and V. Voloshin, On the upper chromatic index of a multigraph, Comput. Sci. J. Moldova 10 (2002) 81–91.

[7] S.L. Hakimi and O. Kariv, A generalization of edge-coloring in graphs, J. Graph Theory 10 (1986) 139–154. doi:10.1002/jgt.3190100202

[8] H. Krawczyk and M. Kubale, An approximation algorithm for diagnostic test scheduling in multicomputer systems, IEEE Trans. Comput. C-34 (1985) 869–872. doi:10.1109/TC.1985.1676647

[9] S.I. Nakano, T. Nishizeki and N. Saito, On the f-coloring of multigraphs, IEEE Trans. Circuits Syst. 35 (1988) 345–353. doi:10.1109/31.1747

[10] D. Sitton, Maximum matching in complete multipartite graphs, Furman Univ. Electronic J. Undergraduate Math. 2 (1996) 6–16.

[11] R. Soták, Personal communication.

[12] X. Zhang and G. Liu, f-colorings of some graphs of f-class 1, Acta Math. Sin. (Engl. Ser.) 24 (2008) 743–748. doi:10.1007/s10114-007-6194-9

[13] X. Zhang and G. Liu, Some sufficient conditions for a graph to be of Cf 1, Appl. Math. Lett. 19 (2006) 38–44. doi:10.1016/j.aml.2005.03.006

[14] X. Zhang and G. Liu, Some graphs of class 1 for f-colorings, Appl. Math. Lett. 21 (2008) 23–29. doi:10.1016/j.aml.2007.02.009