Products Of Digraphs And Their Competition Graphs
Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 43-58.

Voir la notice de l'article provenant de la source Library of Science

If D = (V, A) is a digraph, its competition graph (with loops) CGl(D) has the vertex set V and u, v ⊆ V is an edge of CGl(D) if and only if there is a vertex w ∈ V such that (u, w), (v, w) ∈ A. In CGl(D), loops v are allowed only if v is the only predecessor of a certain vertex w ∈ V. For several products D1 ⚬ D2 of digraphs D1 and D2, we investigate the relations between the competition graphs of the factors D1, D2 and the competition graph of their product D1 ⚬ D2.
Keywords: competition graph, product of digraphs
@article{DMGT_2016_36_1_a3,
     author = {Sonntag, Martin and Teichert, Hanns-Martin},
     title = {Products {Of} {Digraphs} {And} {Their} {Competition} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {43--58},
     publisher = {mathdoc},
     volume = {36},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a3/}
}
TY  - JOUR
AU  - Sonntag, Martin
AU  - Teichert, Hanns-Martin
TI  - Products Of Digraphs And Their Competition Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2016
SP  - 43
EP  - 58
VL  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a3/
LA  - en
ID  - DMGT_2016_36_1_a3
ER  - 
%0 Journal Article
%A Sonntag, Martin
%A Teichert, Hanns-Martin
%T Products Of Digraphs And Their Competition Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2016
%P 43-58
%V 36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a3/
%G en
%F DMGT_2016_36_1_a3
Sonntag, Martin; Teichert, Hanns-Martin. Products Of Digraphs And Their Competition Graphs. Discussiones Mathematicae. Graph Theory, Tome 36 (2016) no. 1, pp. 43-58. http://geodesic.mathdoc.fr/item/DMGT_2016_36_1_a3/

[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2001).

[2] J.E. Cohen, Interval graphs and food webs: a finding and a problem (Rand Corporation Document 17696-PR, Santa Monica, CA, 1968).

[3] W. Imrich and S. Klavžar, Product Graphs (John Wiley & Sons, Inc., New York, 2000).

[4] S.R. Kim, The competition number and its variants, in: Quo vadis, graph theory?, J. Gimbel, J.W. Kennedy and L.V. Quintas (Eds.), Ann. Discrete Math. 55 (1993) 313–326. doi:10.1016/s0167-5060(08)70396-0

[5] J.R. Lundgren, Food webs, competition graphs, competition-common enemy graphs and niche graphs, in: Applications of combinatorics and graph theory to the biological and social sciences, F. Roberts (Ed.), (IMA 17, Springer, New York, 1989) 221–243. doi:10.1007/978-1-4684-6381-1_9

[6] F.S. Roberts, Competition graphs and phylogeny graphs, in: Graph theory and combinatorial biology, L. Lovász (Ed.), (Proc. Int. Colloqu. Balatonlelle (Hungary) 1996, Bolyai Soc. Math. Studies 7, Budapest, 1999) 333–362.

[7] M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324–329. doi:10.1016/j.dam.2004.02.010

[8] M. Sonntag and H.-M. Teichert, Competition hypergraphs of products of digraphs, Graphs Combin. 25 (2009) 611–624. doi:10.1007/s00373-005-0868-9