Decomposition of Complete Bipartite Multigraphs Into Paths and Cycles Having $k$ Edges
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 715-731.

Voir la notice de l'article provenant de la source Library of Science

We give necessary and sufficient conditions for the decomposition of complete bipartite multigraph K_m,n ( λ ) into paths and cycles having k edges. In particular, we show that such decomposition exists in K_m,n ( λ ), when λ≡ 0 (mod 2), m,n ≥ k/2, m+n gt; k and k(p + q) = 2mn for k ≡ 0 (mod 2) and also when λ≥ 3, λ m ≡λ n ≡ 0(mod 2), k(p + q) =λ m n, m, n ≥ k, (resp., m, n ≥ 3k//2) for k ≡ 0(mod 4) (respectively, for k ≡ 2(mod 4)). In fact, the necessary conditions given above are also sufficient when λ = 2.
Keywords: path, cycle, graph decomposition, multigraph
@article{DMGT_2015_35_4_a9,
     author = {Jeevadoss, Shanmugasundaram and Muthusamy, Appu},
     title = {Decomposition of {Complete} {Bipartite} {Multigraphs} {Into} {Paths} and {Cycles} {Having} $k$ {Edges}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {715--731},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a9/}
}
TY  - JOUR
AU  - Jeevadoss, Shanmugasundaram
AU  - Muthusamy, Appu
TI  - Decomposition of Complete Bipartite Multigraphs Into Paths and Cycles Having $k$ Edges
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 715
EP  - 731
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a9/
LA  - en
ID  - DMGT_2015_35_4_a9
ER  - 
%0 Journal Article
%A Jeevadoss, Shanmugasundaram
%A Muthusamy, Appu
%T Decomposition of Complete Bipartite Multigraphs Into Paths and Cycles Having $k$ Edges
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 715-731
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a9/
%G en
%F DMGT_2015_35_4_a9
Jeevadoss, Shanmugasundaram; Muthusamy, Appu. Decomposition of Complete Bipartite Multigraphs Into Paths and Cycles Having $k$ Edges. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 715-731. http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a9/

[1] A.A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003) 433-447. doi:10.1007/s00373-003-0530-3

[2] A.A. Abueida and M. Daven, Multidecompositions of the complete graph, Ars Combin. 72 (2004) 17-22.

[3] A.A. Abueida, M. Daven and K.J. Roblee, Multidesigns of the λ-fold complete graph- pairs of orders 4 and 5, Australas. J. Combin. 32 (2005) 125-136.

[4] A.A. Abueida and T. O’Neil, Multidecomposition of Km(λ) into small cycles and claws, Bull. Inst. Comb. Appl. 49 (2007) 32-40.

[5] A.A. Abueida and C. Hampson, Multidecomposition of Kn − F into graph-pairs of order 5 where F is a Hamilton cycle or an (almost) 1-factor, Ars Combin. 97 (2010) 399-416.

[6] A.A. Abueida and M. Daven, Multidecompositions of several graph products, Graphs Combin. 29 (2013) 315-326. doi:10.1007/s00373-011-1127-x

[7] A.A. Abueida and C. Lian, On the decompositions of complete graphs into cycles and stars on the same number of edges, Discuss. Math. Graph Theory 34 (2014) 113-125. doi:10.7151/dmgt.1719

[8] J.A. Bondy and U.R.S. Murty, Graph Theory with Applications (The Macmillan Press Ltd, New York, 1976).

[9] C.C. Chou, C.M. Fu and W.C. Huang, Decomposition of Km,n into short cycles, Discrete Math. 197/198 (1999) 195-203. doi:10.1016/S0012-365X(99)90063-8

[10] C.C. Chou and C.M. Fu, Decomposition of Km,n into 4-cycles and 2t-cycles, J. Comb. Optim. 14 (2007) 205-218. doi:10.1007/s10878-007-9060-x

[11] S. Jeevadoss and A. Muthusamy, Sufficient condition for {C4, C2t}-decomposition of K2m,2n-An improved bound, S. Arumugam and B. Smyth (Eds.), Combinatorial Algorithms, IWOCA 2012, LNCS, (Springer-Verlag Berlin Heidelberg) 7643 (2012) 143-147.

[12] S. Jeevadoss and A. Muthusamy, Decomposition of complete bipartite graphs into paths and cycles, Discrete Math. 331 (2014) 98-108. doi:10.1016/j.disc.2014.05.009

[13] H.-C. Lee and Y.-P. Chu Multidecompositions of the balanced complete bipartite graphs into paths and stars, ISRN Combinatorics (2013). doi:10.1155/2013/398473

[14] H.-C. Lee, Multidecompositions of complete bipartite graphs into cycles and stars, Ars Combin. 108 (2013) 355-364.

[15] H.-C. Lee, Decomposition of complete bipartite graphs with a 1-factor removed into cycles and stars, Discrete Math. 313 (2013) 2354-2358. doi:10.1016/j.disc.2013.06.014

[16] D.G. Sarvate and L. Zhang, Decomposition of a λKv into equal number of K3s and P3s, Bull. Inst. Comb. Appl. 67 (2013) 43-48.

[17] T.-W. Shyu, Decompositions of complete graphs into paths and cycles, Ars Combin. 97 (2010) 257-270.

[18] T.-W. Shyu, Decompositions of complete graphs into paths and stars, Discrete Math. 330 (2010) 2164-2169. doi:10.1016/j.disc.2010.04.009

[19] T.-W. Shyu, Decompositions of complete graphs into paths of length three and tri- angles, Ars Combin. 107 (2012) 209-224.

[20] T.-W. Shyu, Decomposition of complete graphs into cycles and stars, Graphs Com- bin. 29 (2013) 301-313. doi:10.1007/s00373-011-1105-3

[21] T.-W. Shyu, Decomposition of complete bipartite graphs into paths and stars with same number of edges, Discrete Math. 313 (2013) 865-871. doi:10.1016/j.disc.2012.12.020

[22] D. Sotteau, Decomposition of Km,n (K*m,n) into cycles (circuits) of length 2k, J. Combin. Theory Ser. B 30 (1981) 75-81. doi:10.1016/0095-8956(81)90093-9

[23] M. Truszczyński, Note on the decomposition of λKm,n(λK*m,n) into paths, Discrete Math. 55 (1985) 89-96. doi:10.1016/S0012-365X(85)80023-6