Critical Graphs for R(Pn, Pm) and the Star-Critical Ramsey Number for Paths
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 689-701.

Voir la notice de l'article provenant de la source Library of Science

The graph Ramsey number R(G,H) is the smallest integer r such that every 2-coloring of the edges of Kr contains either a red copy of G or a blue copy of H. The star-critical Ramsey number r*(G,H) is the smallest integer k such that every 2-coloring of the edges of Kr − K1,r−1−k contains either a red copy of G or a blue copy of H. We will classify the critical graphs, 2-colorings of the complete graph on R(G,H) − 1 vertices with no red G or blue H, for the path-path Ramsey number. This classification will be used in the proof of r(Pn, Pm).
Keywords: Ramsey number, critical graph, star-critical Ramsey number, path
@article{DMGT_2015_35_4_a7,
     author = {Hook, Jonelle},
     title = {Critical {Graphs} for {R(P\protect\textsubscript{n},} {P\protect\textsubscript{m})} and the {Star-Critical} {Ramsey} {Number} for {Paths}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {689--701},
     publisher = {mathdoc},
     volume = {35},
     number = {4},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a7/}
}
TY  - JOUR
AU  - Hook, Jonelle
TI  - Critical Graphs for R(Pn, Pm) and the Star-Critical Ramsey Number for Paths
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 689
EP  - 701
VL  - 35
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a7/
LA  - en
ID  - DMGT_2015_35_4_a7
ER  - 
%0 Journal Article
%A Hook, Jonelle
%T Critical Graphs for R(Pn, Pm) and the Star-Critical Ramsey Number for Paths
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 689-701
%V 35
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a7/
%G en
%F DMGT_2015_35_4_a7
Hook, Jonelle. Critical Graphs for R(Pn, Pm) and the Star-Critical Ramsey Number for Paths. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 689-701. http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a7/

[1] L. Gerencsér and A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967) 167-170.

[2] J. Hook, The classification of critical graphs and star-critical Ramsey numbers (Ph.D. Thesis, Lehigh University, 2010).

[3] J. Hook and G. Isaak, Star-critical Ramsey numbers, Discrete Appl. Math. 159 (2011) 328-334. doi:10.1016/j.dam.2010.11.007

[4] R.J. Faudree, S.L. Lawrence, T.D. Parsons and R.H. Schelp, Path-cycle Ramsey numbers, Discrete Math. 10 (1974) 269-277. doi:10.1016/0012-365X(74)90122-8

[5] R.J. Faudree and R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974) 313-329. doi:10.1016/0012-365X(74)90151-4

[6] D.B. West, Introduction to Graph Theory (Second Ed., Prentice Hall, Upper Saddle River, New Jersey, 2000).