Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_4_a5, author = {Raheem, A. and Javaid, M. and Baig, A.Q.}, title = {On {Super} {Edge-Antimagicness} of {Subdivided} {Stars}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {663--673}, publisher = {mathdoc}, volume = {35}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a5/} }
TY - JOUR AU - Raheem, A. AU - Javaid, M. AU - Baig, A.Q. TI - On Super Edge-Antimagicness of Subdivided Stars JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 663 EP - 673 VL - 35 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a5/ LA - en ID - DMGT_2015_35_4_a5 ER -
Raheem, A.; Javaid, M.; Baig, A.Q. On Super Edge-Antimagicness of Subdivided Stars. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 663-673. http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a5/
[1] M. Bača, Y. Lin, M. Miller and M.Z. Youssef, Edge-antimagic graphs, Discrete Math. 307 (2007) 1232-1244. doi:10.1016/j.disc.2005.10.038
[2] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Util. Math. 60 (2001) 229-239.
[3] M. Bača, Y. Lin and F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Util. Math. 73 (2007) 117-128.
[4] M. Bača and M. Miller, Super Edge-Antimagic Graphs (Brown Walker Press, Boca Raton, Florida USA, 2008).
[5] M. Bača, A. Semaničová-Fěnovčíková and M.K. Shafiq, A method to generate large classes of edge-antimagic trees, Util. Math. 86 (2011) 33-43.
[6] Dafik, M. Miller, J. Ryan and M. Bača, On super (a, d)-edge antimagic total labeling of disconnected graphs, Discrete Math. 309 (2009) 4909-4915. doi:10.1016/j.disc.2008.04.031
[7] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105-109.
[8] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge-magic labelings among other classes of labelings, Discrete Math. 231 (2001) 153-168. doi:0.1016/S0012-365X(00)00314-9
[9] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, On super edge- magic graph, Ars Combin. 64 (2002) 81-95.
[10] Y. Fukuchi, A recursive theorem for super edge-magic labeling of trees, SUT J. Math. 36 (2000) 279-285.
[11] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2010).
[12] M. Javaid, M. Hussain, K. Ali and K.H. Dar, Super edge-magic total labeling on w-trees, Util. Math. 86 (2011) 183-191.
[13] M. Javaid, A.A. Bhatti and M. Hussain, On (a, d)-edge-antimagic total labeling of extended w-trees, Util. Math. 87 (2012) 293-303.
[14] M. Javaid, A.A. Bhatti, M. Hussain and K. Ali, Super edge-magic total labeling on forest of extended w-trees, Util. Math. 91 (2013) 155-162.
[15] M. Javaid, M. Hussain, K. Ali and H. Shaker, On super edge-magic total labeling on subdivision of trees, Util. Math. 89 (2012) 169-177.
[16] M. Javaid and A.A. Bhatti, On super (a, d)-edge-antimagic total labeling of subdi- vided stars, Ars Combin. 105 (2012) 503-512.
[17] M. Javaid, On super edge-antimagic total labeling of subdivided stars, Discuss. Math. Graph Theory 34 (2014) 691-705. doi:10.7151/dmgt.1764
[18] M. Javaid and A.A. Bhatti, Super (a, d)-edge-antimagic total labeling of subdivided stars and w-trees, Util. Math., to appear.
[19] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461. doi:10.4153/CMB-1970-084-1
[20] A. Kotzig and A. Rosa, Magic valuation of complete graphs, Centre de Recherches Mathematiques, Universite de Montreal (1972) CRM-175.
[21] S.M. Lee and Q.X. Shah, All trees with at most 17 vertices are super edge-magic, 16th MCCCC Conference, Carbondale (Southern Illinois University, November 2002).
[22] S.M. Lee and M.C. Kong, On super edge-magic n stars, J. Combin. Math. Combin. Comput. 42 (2002) 81-96.
[23] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic, College Math. 17(2) (2001) 41-44.
[24] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic (II), College Math. 20(3) (2004) 51-53.
[25] A.A.G. Ngurah, R. Simanjuntak and E.T. Baskoro, On (super) edge-magic total labeling of subdivision of K1,3, SUT J. Math. 43 (2007) 127-136.
[26] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On super edge-magic total labeling of a subdivision of a star Sn, Util. Math. 81 (2010) 275-284.
[27] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph label- ings, in: Proc. of Eleventh Australasian Workshop on Combinatorial Algorithms 11 (2000) 179-189.
[28] Slamin, M. Bača, Y. Lin, M. Miller and R. Simanjuntak, Edge-magic total labelings of wheel, fans and friendship graphs, Bull. Inst. Combin. Appl. 35 (2002) 89-98.
[29] K.A. Sugeng, M. Miller, Slamin and M. Bača, (a, d)-edge-antimagic total labelings of caterpillars, Lect. Notes Comput. Sci. 3330 (2005) 169-180.
[30] D.B. West, An Introduction to Graph Theory (Prentice-Hall, 1996).