Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_4_a1, author = {Hedetniemi, Jason T.}, title = {On {Unique} {Minimum} {Dominating} {Sets} in {Some} {Cartesian} {Product} {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {615--628}, publisher = {mathdoc}, volume = {35}, number = {4}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a1/} }
TY - JOUR AU - Hedetniemi, Jason T. TI - On Unique Minimum Dominating Sets in Some Cartesian Product Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 615 EP - 628 VL - 35 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a1/ LA - en ID - DMGT_2015_35_4_a1 ER -
Hedetniemi, Jason T. On Unique Minimum Dominating Sets in Some Cartesian Product Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 615-628. http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a1/
[1] M. Chellali and T. Haynes, Trees with unique minimum paired-dominating sets, Ars Combin. 73 (2004) 3-12.
[2] E. Cockayne, S. Goodman and S. Hedetniemi, A linear algorithm for the domination number of a tree, Inform. Process. Lett. 4 (1975) 41-44. doi:10.1016/0020-0190(75)90011-3
[3] M. Fischermann, Block graphs with unique minimum dominating sets, Discrete Math. 240 (2001) 247-251. doi:10.1016/S0012-365X(01)00196-0
[4] M. Fischermann, Unique total domination graphs, Ars Combin. 73 (2004) 289-297.
[5] M. Fischermann, D. Rautenbach and L. Volkmann, Maximum graphs with a unique minimum dominating set, Discrete Math. 260 (2003) 197-203. doi:10.1016/S0012-365X(02)00670-2
[6] M. Fischermann, D. Rautenbach and L. Volkmann, A note on the complexity of graph parameters and the uniqueness of their realizations, J. Combin. Math. Com- bin. Comput. 47 (2003) 183-188.
[7] M. Fischermann and L. Volkmann, Unique minimum domination in trees, Australas. J. Combin. 25 (2002) 117-124.
[8] M. Fischermann and L. Volkmann, Cactus graphs with unique minimum dominating sets, Util. Math. 63 (2003) 229-238.
[9] M. Fischermann and L. Volkmann, Unique independence, upper domination and upper irredundance in graphs, J. Combin. Math. Combin. Comput. 47 (2003) 237-249.
[10] M. Fischermann, L. Volkmann and I. Zverovich, Unique irredundance, domination, and independent domination in graphs, Discrete Math. 305 (2005) 190-200. doi:10.1016/j.disc.2005.08.005
[11] M. Fraboni and N. Shank, Maximum graphs with unique minimum dominating set of size two, Australas. J. Combin. 46 (2010) 91-99.
[12] G. Gunther, B. Hartnell, L. Markus and D. Rall, Graphs with unique minimum dom- inating sets, in: Proc. 25th S.E. Int. Conf. Combin., Graph Theory, and Computing, Congr. Numer. 101 (1994) 55-63.
[13] R. Hammack, W. Imrich and S. Klavˇzar, Handbook of Product Graphs (CRC Press, 2011).
[14] T. Haynes and M. Henning, Trees with unique minimum total dominating sets, Discuss. Math. Graph Theory 22 (2002) 233-246. doi:10.7151/dmgt.1172
[15] M. Henning, Defending the Roman Empire from multiple attacks, Discrete Math. 271 (2003) 101-115. doi:10.1016/S0012-365X(03)00040-2
[16] M. Henning and S. Hedetniemi, Defending the Roman Empire-a new strategy, Discrete Math. 266 (2003) 239-251. doi:10.1016/S0012-365X(02)00811-7
[17] J. Topp, Graphs with unique minimum edge dominating sets and graphs with unique maximum independent sets of vertices, Discrete Math. 121 (1993) 199-210. doi:10.1016/0012-365X(93)90553-6