Asteroidal Quadruples in non Rooted Path Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 603-614 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

A directed path graph is the intersection graph of a family of directed subpaths of a directed tree. A rooted path graph is the intersection graph of a family of directed subpaths of a rooted tree. Rooted path graphs are directed path graphs. Several characterizations are known for directed path graphs: one by forbidden induced subgraphs and one by forbidden asteroids. It is an open problem to find such characterizations for rooted path graphs. For this purpose, we are studying in this paper directed path graphs that are non rooted path graphs. We prove that such graphs always contain an asteroidal quadruple.
Keywords: clique trees, rooted path graphs, asteroidal quadruples
@article{DMGT_2015_35_4_a0,
     author = {Gutierrez, Marisa and L\'ev\^eque, Benjamin and Tondato, Silvia B.},
     title = {Asteroidal {Quadruples} in non {Rooted} {Path} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {603--614},
     year = {2015},
     volume = {35},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a0/}
}
TY  - JOUR
AU  - Gutierrez, Marisa
AU  - Lévêque, Benjamin
AU  - Tondato, Silvia B.
TI  - Asteroidal Quadruples in non Rooted Path Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 603
EP  - 614
VL  - 35
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a0/
LA  - en
ID  - DMGT_2015_35_4_a0
ER  - 
%0 Journal Article
%A Gutierrez, Marisa
%A Lévêque, Benjamin
%A Tondato, Silvia B.
%T Asteroidal Quadruples in non Rooted Path Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 603-614
%V 35
%N 4
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a0/
%G en
%F DMGT_2015_35_4_a0
Gutierrez, Marisa; Lévêque, Benjamin; Tondato, Silvia B. Asteroidal Quadruples in non Rooted Path Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 4, pp. 603-614. http://geodesic.mathdoc.fr/item/DMGT_2015_35_4_a0/

[1] T. Kloks, D. Kratsch, and H. Muller, Asteroidal sets in graphs, Lecture Notes in Comput. Sci. 1335 (1997) 229-241. doi:10.1007/BFb0024501

[2] K. Cameron, C.T. Hóang and B. Lévêque, Asteroids in rooted and directed path graphs, Electron. Notes Discrete Math. 32 (2009) 67-74. doi:10.1016/j.endm.2009.02.010

[3] K. Cameron, C.T. Hóang and B. Lévêque, Characterizing directed path graphs by forbidden asteroids, J. Graph Theory 68 (2011) 103-112. doi:10.1002/jgt.20543

[4] S. Chaplick, M. Gutierrez, B.Lévêque and S.B.Tondato, From path graphs to di- rected path graphs, Lecture Notes in Comput. Sci. 6410 (2010) 256-265. doi:10.1007/978-3-642-16926-7 24

[5] F. Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs, J. Combin. Theory Ser. B 16 (1974) 47-56. doi:10.1016/0095-8956(74)90094-X

[6] C.G. Lekkerkerker and J.Ch. Boland, Representation of finite graph by a set of intervals on the real line, Fund. Math. (1962) 45-64.

[7] B.Lévêque, F. Maffray and M. Preissmann, Characterizing path graphs by forbidden induced subgraphs, J. Graph Theory 62 (2009) 369-384. doi:10.1002/jgt.20407

[8] I. Lin, T. McKee and D.B. West, The leafage of a chordal graphs, Discuss. Math. Graph Theory 18 (1998) 23-48. doi:10.7151/dmgt.1061

[9] C. Monma and V. Wei, Intersection graphs of paths in a tree, J. Combin. Theory Ser. B 41 (1986) 141-181. doi:10.1016/0095-8956(86)90042-0

[10] B.S. Panda, The forbidden subgraph characterization of directed vertex graphs, Discrete Math. 196 (1999) 239-256. doi:10.1016/S0012-365X(98)00127-7