Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_3_a9, author = {Kemnitz, Arnfried and Marangio, Massimiliano and Mih\'ok, Peter and Oravcov\'a, Janka and Sot\'ak, Roman}, title = {Generalized {Fractional} and {Circular} {Total} {Colorings} of {Graphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {517--532}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a9/} }
TY - JOUR AU - Kemnitz, Arnfried AU - Marangio, Massimiliano AU - Mihók, Peter AU - Oravcová, Janka AU - Soták, Roman TI - Generalized Fractional and Circular Total Colorings of Graphs JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 517 EP - 532 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a9/ LA - en ID - DMGT_2015_35_3_a9 ER -
%0 Journal Article %A Kemnitz, Arnfried %A Marangio, Massimiliano %A Mihók, Peter %A Oravcová, Janka %A Soták, Roman %T Generalized Fractional and Circular Total Colorings of Graphs %J Discussiones Mathematicae. Graph Theory %D 2015 %P 517-532 %V 35 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a9/ %G en %F DMGT_2015_35_3_a9
Kemnitz, Arnfried; Marangio, Massimiliano; Mihók, Peter; Oravcová, Janka; Soták, Roman. Generalized Fractional and Circular Total Colorings of Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 517-532. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a9/
[1] I. Bárány, A short proof of Kneser’s Conjecture, J. Combin. Theory Ser. A 25 (1978) 325-326. doi:10.1016/0097-3165(78)90023-7
[2] M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók, Generalized total colorings of graphs, Discuss. Math. Graph Theory 31 (2011) 209-222. doi:10.7151/dmgt.1540
[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, Ed., Advances in Graph Theory, Vishwa International Publications, Gulbarga (1991) 42-69.
[4] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semaniˇsin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50. doi:10.7151/dmgt.1037
[5] F.R.K. Chung, On the Ramsey numbers N(3, 3, . . ., 3; 2), Discrete Math. 5 (1973) 317-321. doi:10.1016/0012-365X(73)90125-8
[6] M.J. Dorfling and S. Dorfling, Generalized edge-chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 349-359. doi:10.7151/dmgt.1180
[7] A. Hackmann and A. Kemnitz, Circular total colorings of graphs, Congr. Numer. 158 (2002) 43-50.
[8] R.P. Jones, Hereditary properties and P-chromatic numbers, in: Combinatorics, London Math. Soc. Lecture Note, (Cambridge Univ. Press, London) 13 (1974) 83-88.
[9] G. Karafová, Generalized fractional total coloring of complete graphs, Discuss. Math. Graph Theory 33 (2013) 665-676. doi:10.7151/dmgt.1697
[10] K. Kilakos and B. Reed, Fractionally colouring total graphs, Combinatorica 13 (1993) 435-440. doi:10.1007/BF01303515
[11] L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. The- ory Ser. A 25 (1978) 319-324. doi:10.1016/0097-3165(78)90022-5
[12] P. Mihók, Zs. Tuza and M. Voigt, Fractional P-colourings and P-choice-ratio, Tatra Mt. Math. Publ. 18 (1999) 69-77.
[13] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (John Wiley & Sons, New York, 1997). http://www.ams.jhu.edu/∼ers/fgt.