Generalized Fractional and Circular Total Colorings of Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 517-532.

Voir la notice de l'article provenant de la source Library of Science

Let 𝒫 and 𝒬 be additive and hereditary graph properties, r, s ∈ℕ, r ≥ s, and [ℤ_r]^s be the set of all s-element subsets of ℤ_r. An (r, s)-fractional (𝒫,𝒬)-total coloring of G is an assignment h : V (G) ∪ E(G) → [ℤ_r]^s such that for each i ∈ℤ_r the following holds: the vertices of G whose color sets contain color i induce a subgraph of G with property 𝒫, edges with color sets containing color i induce a subgraph of G with property 𝒬, and the color sets of incident vertices and edges are disjoint. If each vertex and edge of G is colored with a set of s consecutive elements of ℤ_r we obtain an (r, s)-circular (𝒫,𝒬)-total coloring of G. In this paper we present basic results on (r, s)-fractional/circular (𝒫,𝒬)-total colorings. We introduce the fractional and circular (𝒫,𝒬)-total chromatic number of a graph and we determine this number for complete graphs and some classes of additive and hereditary properties.
Keywords: graph property, (P,Q)-total coloring, circular coloring, fractional coloring, fractional (P,Q)-total chromatic number, circular (P,Q)- total chromatic number
@article{DMGT_2015_35_3_a9,
     author = {Kemnitz, Arnfried and Marangio, Massimiliano and Mih\'ok, Peter and Oravcov\'a, Janka and Sot\'ak, Roman},
     title = {Generalized {Fractional} and {Circular} {Total} {Colorings} of {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {517--532},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a9/}
}
TY  - JOUR
AU  - Kemnitz, Arnfried
AU  - Marangio, Massimiliano
AU  - Mihók, Peter
AU  - Oravcová, Janka
AU  - Soták, Roman
TI  - Generalized Fractional and Circular Total Colorings of Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 517
EP  - 532
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a9/
LA  - en
ID  - DMGT_2015_35_3_a9
ER  - 
%0 Journal Article
%A Kemnitz, Arnfried
%A Marangio, Massimiliano
%A Mihók, Peter
%A Oravcová, Janka
%A Soták, Roman
%T Generalized Fractional and Circular Total Colorings of Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 517-532
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a9/
%G en
%F DMGT_2015_35_3_a9
Kemnitz, Arnfried; Marangio, Massimiliano; Mihók, Peter; Oravcová, Janka; Soták, Roman. Generalized Fractional and Circular Total Colorings of Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 517-532. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a9/

[1] I. Bárány, A short proof of Kneser’s Conjecture, J. Combin. Theory Ser. A 25 (1978) 325-326. doi:10.1016/0097-3165(78)90023-7

[2] M. Borowiecki, A. Kemnitz, M. Marangio and P. Mihók, Generalized total colorings of graphs, Discuss. Math. Graph Theory 31 (2011) 209-222. doi:10.7151/dmgt.1540

[3] M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, Ed., Advances in Graph Theory, Vishwa International Publications, Gulbarga (1991) 42-69.

[4] M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semaniˇsin, Survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50. doi:10.7151/dmgt.1037

[5] F.R.K. Chung, On the Ramsey numbers N(3, 3, . . ., 3; 2), Discrete Math. 5 (1973) 317-321. doi:10.1016/0012-365X(73)90125-8

[6] M.J. Dorfling and S. Dorfling, Generalized edge-chromatic numbers and additive hereditary properties of graphs, Discuss. Math. Graph Theory 22 (2002) 349-359. doi:10.7151/dmgt.1180

[7] A. Hackmann and A. Kemnitz, Circular total colorings of graphs, Congr. Numer. 158 (2002) 43-50.

[8] R.P. Jones, Hereditary properties and P-chromatic numbers, in: Combinatorics, London Math. Soc. Lecture Note, (Cambridge Univ. Press, London) 13 (1974) 83-88.

[9] G. Karafová, Generalized fractional total coloring of complete graphs, Discuss. Math. Graph Theory 33 (2013) 665-676. doi:10.7151/dmgt.1697

[10] K. Kilakos and B. Reed, Fractionally colouring total graphs, Combinatorica 13 (1993) 435-440. doi:10.1007/BF01303515

[11] L. Lovász, Kneser’s conjecture, chromatic number, and homotopy, J. Combin. The- ory Ser. A 25 (1978) 319-324. doi:10.1016/0097-3165(78)90022-5

[12] P. Mihók, Zs. Tuza and M. Voigt, Fractional P-colourings and P-choice-ratio, Tatra Mt. Math. Publ. 18 (1999) 69-77.

[13] E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory (John Wiley & Sons, New York, 1997). http://www.ams.jhu.edu/∼ers/fgt.