Reconstructing Surface Triangulations by Their Intersection Matrices
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 483-491.

Voir la notice de l'article provenant de la source Library of Science

The intersection matrix of a simplicial complex has entries equal to the rank of the intersecction of its facets. We prove that this matrix is enough to define up to isomorphism a triangulation of a surface.
Keywords: triangulated surface, isomorphism, intersection matrix
@article{DMGT_2015_35_3_a7,
     author = {Arocha, Jorge L. and Bracho, Javier and Garc{\'\i}a-Col{\'\i}n, Natalia and Hubard, Isabel},
     title = {Reconstructing {Surface} {Triangulations} by {Their} {Intersection} {Matrices}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {483--491},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a7/}
}
TY  - JOUR
AU  - Arocha, Jorge L.
AU  - Bracho, Javier
AU  - García-Colín, Natalia
AU  - Hubard, Isabel
TI  - Reconstructing Surface Triangulations by Their Intersection Matrices
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 483
EP  - 491
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a7/
LA  - en
ID  - DMGT_2015_35_3_a7
ER  - 
%0 Journal Article
%A Arocha, Jorge L.
%A Bracho, Javier
%A García-Colín, Natalia
%A Hubard, Isabel
%T Reconstructing Surface Triangulations by Their Intersection Matrices
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 483-491
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a7/
%G en
%F DMGT_2015_35_3_a7
Arocha, Jorge L.; Bracho, Javier; García-Colín, Natalia; Hubard, Isabel. Reconstructing Surface Triangulations by Their Intersection Matrices. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 483-491. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a7/

[1] R. Blind and P. Mani-Levitska, Puzzles and polytope isomorphisms, Aequationes Math. 34 (1987) 287-297. doi:10.1007/BF01830678

[2] G. Kalai, A simple way to tell a simple polytope from its graph, J. Combin. Theory Ser. A 49 (1988) 381-383. doi:10.1016/0097-3165(88)90064-7

[3] B. Mohar and A. Vodopivec, On polyhedral embeddings of cubic graphs, Combin. Probab. Comput. 15 (2006) 877-893. doi:10.1017/S0963548306007607

[4] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, Springer, (1995). doi:10.1007/978-1-4613-8431-1