Reconstructing Surface Triangulations by Their Intersection Matrices
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 483-491
Cet article a éte moissonné depuis la source Library of Science
The intersection matrix of a simplicial complex has entries equal to the rank of the intersecction of its facets. We prove that this matrix is enough to define up to isomorphism a triangulation of a surface.
Keywords:
triangulated surface, isomorphism, intersection matrix
@article{DMGT_2015_35_3_a7,
author = {Arocha, Jorge L. and Bracho, Javier and Garc{\'\i}a-Col{\'\i}n, Natalia and Hubard, Isabel},
title = {Reconstructing {Surface} {Triangulations} by {Their} {Intersection} {Matrices}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {483--491},
year = {2015},
volume = {35},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a7/}
}
TY - JOUR AU - Arocha, Jorge L. AU - Bracho, Javier AU - García-Colín, Natalia AU - Hubard, Isabel TI - Reconstructing Surface Triangulations by Their Intersection Matrices JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 483 EP - 491 VL - 35 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a7/ LA - en ID - DMGT_2015_35_3_a7 ER -
%0 Journal Article %A Arocha, Jorge L. %A Bracho, Javier %A García-Colín, Natalia %A Hubard, Isabel %T Reconstructing Surface Triangulations by Their Intersection Matrices %J Discussiones Mathematicae. Graph Theory %D 2015 %P 483-491 %V 35 %N 3 %U http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a7/ %G en %F DMGT_2015_35_3_a7
Arocha, Jorge L.; Bracho, Javier; García-Colín, Natalia; Hubard, Isabel. Reconstructing Surface Triangulations by Their Intersection Matrices. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 483-491. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a7/
[1] R. Blind and P. Mani-Levitska, Puzzles and polytope isomorphisms, Aequationes Math. 34 (1987) 287-297. doi:10.1007/BF01830678
[2] G. Kalai, A simple way to tell a simple polytope from its graph, J. Combin. Theory Ser. A 49 (1988) 381-383. doi:10.1016/0097-3165(88)90064-7
[3] B. Mohar and A. Vodopivec, On polyhedral embeddings of cubic graphs, Combin. Probab. Comput. 15 (2006) 877-893. doi:10.1017/S0963548306007607
[4] G.M. Ziegler, Lectures on Polytopes, Graduate Texts in Mathematics, Springer, (1995). doi:10.1007/978-1-4613-8431-1