On the Hypercompetition Numbers of Hypergraphs with Maximum Degree at Most Two
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 595-598 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

In this note, we give an easy and short proof for the theorem by Park and Kim stating that the hypercompetition numbers of hypergraphs with maximum degree at most two is at most two.
Keywords: digraph, competition hypergraph, hypercompetition number
@article{DMGT_2015_35_3_a16,
     author = {Sano, Yoshio},
     title = {On the {Hypercompetition} {Numbers} of {Hypergraphs} with {Maximum} {Degree} at {Most} {Two}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {595--598},
     year = {2015},
     volume = {35},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a16/}
}
TY  - JOUR
AU  - Sano, Yoshio
TI  - On the Hypercompetition Numbers of Hypergraphs with Maximum Degree at Most Two
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 595
EP  - 598
VL  - 35
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a16/
LA  - en
ID  - DMGT_2015_35_3_a16
ER  - 
%0 Journal Article
%A Sano, Yoshio
%T On the Hypercompetition Numbers of Hypergraphs with Maximum Degree at Most Two
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 595-598
%V 35
%N 3
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a16/
%G en
%F DMGT_2015_35_3_a16
Sano, Yoshio. On the Hypercompetition Numbers of Hypergraphs with Maximum Degree at Most Two. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 595-598. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a16/

[1] B. Park and S.-R. Kim, On Opsut’s conjecture for hypercompetition numbers of hypergraphs, Discrete Appl. Math. 160 (2012) 2286-2293. doi:10.1016/j.dam.2012.05.009

[2] B. Park and Y. Sano, On the hypercompetition numbers of hypergraphs, Ars Combin. 100 (2011) 151-159.

[3] M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324-329. doi:10.1016/j.dam.2004.02.010