On the Hypercompetition Numbers of Hypergraphs with Maximum Degree at Most Two
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 595-598
Cet article a éte moissonné depuis la source Library of Science
In this note, we give an easy and short proof for the theorem by Park and Kim stating that the hypercompetition numbers of hypergraphs with maximum degree at most two is at most two.
Keywords:
digraph, competition hypergraph, hypercompetition number
@article{DMGT_2015_35_3_a16,
author = {Sano, Yoshio},
title = {On the {Hypercompetition} {Numbers} of {Hypergraphs} with {Maximum} {Degree} at {Most} {Two}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {595--598},
year = {2015},
volume = {35},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a16/}
}
Sano, Yoshio. On the Hypercompetition Numbers of Hypergraphs with Maximum Degree at Most Two. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 595-598. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a16/
[1] B. Park and S.-R. Kim, On Opsut’s conjecture for hypercompetition numbers of hypergraphs, Discrete Appl. Math. 160 (2012) 2286-2293. doi:10.1016/j.dam.2012.05.009
[2] B. Park and Y. Sano, On the hypercompetition numbers of hypergraphs, Ars Combin. 100 (2011) 151-159.
[3] M. Sonntag and H.-M. Teichert, Competition hypergraphs, Discrete Appl. Math. 143 (2004) 324-329. doi:10.1016/j.dam.2004.02.010