Characterization of Line-Consistent Signed Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 589-594

Voir la notice de l'article provenant de la source Library of Science

The line graph of a graph with signed edges carries vertex signs. A vertex-signed graph is consistent if every circle (cycle, circuit) has positive vertex-sign product. Acharya, Acharya, and Sinha recently characterized line-consistent signed graphs, i.e., edge-signed graphs whose line graphs, with the naturally induced vertex signature, are consistent. Their proof applies Hoede’s relatively difficult characterization of consistent vertex-signed graphs. We give a simple proof that does not depend on Hoede’s theorem as well as a structural description of line-consistent signed graphs.
Keywords: line-consistent signed graph, line graph, consistent vertex-signed graph, consistent marked graph
@article{DMGT_2015_35_3_a15,
     author = {Slilaty, Daniel C. and Zaslavsky, Thomas},
     title = {Characterization of {Line-Consistent} {Signed} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {589--594},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a15/}
}
TY  - JOUR
AU  - Slilaty, Daniel C.
AU  - Zaslavsky, Thomas
TI  - Characterization of Line-Consistent Signed Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 589
EP  - 594
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a15/
LA  - en
ID  - DMGT_2015_35_3_a15
ER  - 
%0 Journal Article
%A Slilaty, Daniel C.
%A Zaslavsky, Thomas
%T Characterization of Line-Consistent Signed Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 589-594
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a15/
%G en
%F DMGT_2015_35_3_a15
Slilaty, Daniel C.; Zaslavsky, Thomas. Characterization of Line-Consistent Signed Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 589-594. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a15/