The Saturation Number for the Length of Degree Monotone Paths
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 557-569
Voir la notice de l'article provenant de la source Library of Science
A degree monotone path in a graph G is a path P such that the sequence of degrees of the vertices in the order in which they appear on P is monotonic. The length (number of vertices) of the longest degree monotone path in G is denoted by mp(G). This parameter, inspired by the well-known Erdős- Szekeres theorem, has been studied by the authors in two earlier papers. Here we consider a saturation problem for the parameter mp(G). We call G saturated if, for every edge e added to G, mp(G + e) gt; mp(G), and we define h(n, k) to be the least possible number of edges in a saturated graph G on n vertices with mp(G) lt; k, while mp(G+e) ≥ k for every new edge e. We obtain linear lower and upper bounds for h(n, k), we determine exactly the values of h(n, k) for k = 3 and 4, and we present constructions of saturated graphs.
Keywords:
paths, degrees, saturation
@article{DMGT_2015_35_3_a12,
author = {Caro, Yair and Lauri, Josef and Zarb, Christina},
title = {The {Saturation} {Number} for the {Length} of {Degree} {Monotone} {Paths}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {557--569},
publisher = {mathdoc},
volume = {35},
number = {3},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a12/}
}
TY - JOUR AU - Caro, Yair AU - Lauri, Josef AU - Zarb, Christina TI - The Saturation Number for the Length of Degree Monotone Paths JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 557 EP - 569 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a12/ LA - en ID - DMGT_2015_35_3_a12 ER -
Caro, Yair; Lauri, Josef; Zarb, Christina. The Saturation Number for the Length of Degree Monotone Paths. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 557-569. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a12/