Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_3_a12, author = {Caro, Yair and Lauri, Josef and Zarb, Christina}, title = {The {Saturation} {Number} for the {Length} of {Degree} {Monotone} {Paths}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {557--569}, publisher = {mathdoc}, volume = {35}, number = {3}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a12/} }
TY - JOUR AU - Caro, Yair AU - Lauri, Josef AU - Zarb, Christina TI - The Saturation Number for the Length of Degree Monotone Paths JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 557 EP - 569 VL - 35 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a12/ LA - en ID - DMGT_2015_35_3_a12 ER -
Caro, Yair; Lauri, Josef; Zarb, Christina. The Saturation Number for the Length of Degree Monotone Paths. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 557-569. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a12/
[1] B. Bollobás, Extremal Graph Theory (Dover Publications, New York, 2004).
[2] Y. Caro, J. Lauri and C. Zarb, Degree monotone paths, ArXiv e-prints (2014) submitted.
[3] Y. Caro, J. Lauri and C. Zarb, Degree monotone paths and graph operations, ArXiv e-prints (2014) submitted.
[4] J. Deering, Uphill and downhill domination in graphs and related graph parameters, Ph.D. Thesis, ETSU (2013).
[5] J. Deering, T.W. Haynes, S.T. Hedetniemi and W. Jamieson, Downhill and uphill domination in graphs, (2013) submitted.
[6] J. Deering, T.W. Haynes, S.T. Hedetniemi and W. Jamieson, A Polynomial time algorithm for downhill and uphill domination, (2013) submitted.
[7] M. Eliáš and J. Matoušek, Higher-order Erdős-Szekeres theorems, Adv. Math. 244 (2013) 1-15. doi:10.1016/j.aim.2013.04.020
[8] P. Erdős, A. Hajnal and J.W. Moon, A problem in graph theory, Amer. Math.Monthly 71 (1964) 1107-1110. doi:10.2307/2311408
[9] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935) 463-470.
[10] J.R. Faudree, R.J. Faudree and J.R. Schmitt, A survey of minimum saturated graphs, Electron. J. Combin. 18 (2011) #DS19.
[11] T.W. Haynes, S.T. Hedetniemi, J.D. Jamieson and W.B. Jamieson, Downhill dom- ination in graphs, Discuss. Math. Graph Theory 34 (2014) 603-612. doi:10.7151/dmgt.1760
[12] L. Kászonyi and Zs. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10 (1986) 203-210. doi:10.1002/jgt.3190100209