A Note on Longest Paths in Circular Arc Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 419-426.

Voir la notice de l'article provenant de la source Library of Science

As observed by Rautenbach and Sereni [SIAM J. Discrete Math. 28 (2014) 335-341] there is a gap in the proof of the theorem of Balister et al. [Combin. Probab. Comput. 13 (2004) 311-317], which states that the intersection of all longest paths in a connected circular arc graph is nonempty. In this paper we close this gap.
Keywords: circular arc graphs, longest paths intersection
@article{DMGT_2015_35_3_a1,
     author = {Joos, Felix},
     title = {A {Note} on {Longest} {Paths} in {Circular} {Arc} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {419--426},
     publisher = {mathdoc},
     volume = {35},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a1/}
}
TY  - JOUR
AU  - Joos, Felix
TI  - A Note on Longest Paths in Circular Arc Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 419
EP  - 426
VL  - 35
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a1/
LA  - en
ID  - DMGT_2015_35_3_a1
ER  - 
%0 Journal Article
%A Joos, Felix
%T A Note on Longest Paths in Circular Arc Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 419-426
%V 35
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a1/
%G en
%F DMGT_2015_35_3_a1
Joos, Felix. A Note on Longest Paths in Circular Arc Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 419-426. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a1/

[1] P.N. Balister, E. Győri, J. Lehel and R.H. Schelp, Longest paths in circular arc graphs, Combin. Probab. Comput. 13 (2004) 311-317. doi:10.1017/S0963548304006145

[2] T. Gallai, Problem 4, in: Theory of graphs, Proceedings of the Colloquium held at Tihany, Hungary, September, 1966,. P. Erdős and G. Katona Eds., Academic Press, New York-London; Akadmiai Kiad, Budapest (1968).

[3] J.M. Keil, Finding Hamiltonian circuits in interval graphs, Inform. Process. Lett. 20 (1985) 201-206. doi:10.1016/0020-0190(85)90050-X

[4] D. Rautenbach and J.-S. Sereni, Transversals of longest paths and cycles, SIAM J. Discrete Math. 28 (2014) 335-341. doi:10.1137/130910658

[5] A. Shabbira, C.T. Zamfirescu and T.I. Zamfirescu, Intersecting longest paths and longest cycles: A survey, Electron. J. Graph Theory Appl. 1 (2013) 56-76. doi:10.5614/ejgta.2013.1.1.6