A Note on Longest Paths in Circular Arc Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 419-426
Voir la notice de l'article provenant de la source Library of Science
As observed by Rautenbach and Sereni [SIAM J. Discrete Math. 28 (2014) 335-341] there is a gap in the proof of the theorem of Balister et al. [Combin. Probab. Comput. 13 (2004) 311-317], which states that the intersection of all longest paths in a connected circular arc graph is nonempty. In this paper we close this gap.
Keywords:
circular arc graphs, longest paths intersection
@article{DMGT_2015_35_3_a1,
author = {Joos, Felix},
title = {A {Note} on {Longest} {Paths} in {Circular} {Arc} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {419--426},
publisher = {mathdoc},
volume = {35},
number = {3},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a1/}
}
Joos, Felix. A Note on Longest Paths in Circular Arc Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 3, pp. 419-426. http://geodesic.mathdoc.fr/item/DMGT_2015_35_3_a1/