Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_2_a7, author = {Klostermeyer, William F. and Mynhardt, C.M.}, title = {Domination, {Eternal} {Domination,} and {Clique} {Covering}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {283--300}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a7/} }
TY - JOUR AU - Klostermeyer, William F. AU - Mynhardt, C.M. TI - Domination, Eternal Domination, and Clique Covering JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 283 EP - 300 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a7/ LA - en ID - DMGT_2015_35_2_a7 ER -
Klostermeyer, William F.; Mynhardt, C.M. Domination, Eternal Domination, and Clique Covering. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 283-300. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a7/
[1] M. Anderson, C. Barrientos, R. Brigham, J. Carrington, R. Vitray and J. Yellen, Maximum demand graphs for eternal security, J. Combin. Math. Combin. Comput. 61 (2007) 111-128.
[2] B. Bollobás and E.J. Cockayne, Graph-theoretic parameters concerning domination, independence, and irredundance, J. Graph Theory 3 (1979) 241-249. doi:10.1002/jgt.3190030306
[3] A. Braga, C.C. de Souza and O. Lee, A note on the paper “Eternal security in graphs” by Goddard, Hedetniemi, and Hedetniemi (2005), J. Combin. Math. Combin. Comput., to appear.
[4] A.P. Burger, E.J. Cockayne, W.R. Gr¨undlingh, C.M. Mynhardt, J.H. van Vuuren and W. Winterbach, Infinite order domination in graphs, J. Combin. Math. Combin. Comput. 50 (2004) 179-194.
[5] W. Goddard, S.M. Hedetniemi and S.T. Hedetniemi, Eternal security in graphs, J. Combin. Math. Combin. Comput. 52 (2005) 169-180.
[6] J. Goldwasser and W.F. Klostermeyer, Tight bounds for eternal dominating sets in graphs, Discrete Math. 308 (2008) 2589-2593. doi:10.1016/j.disc.2007.06.005
[7] J. Goldwasser, W.F. Klostermeyer and C.M. Mynhardt, Eternal protection in grid graphs, Util. Math. 91 (2013) 47-64.
[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[9] W. Klostermeyer and G. MacGillivray, Eternally secure sets, independence sets, and cliques, AKCE Int. J. Graphs Comb. 2 (2005) 119-122.
[10] W.F. Klostermeyer and G. MacGillivray, Eternal security in graphs of fixed inde- pendence number, J. Combin. Math. Combin. Comput. 63 (2007) 97-101.
[11] W.F. Klostermeyer and G. MacGillivray, Eternal dominating sets in graphs, J. Combin. Math. Combin. Comput. 68 (2009) 97-111.
[12] W.F. Klostermeyer and C.M. Mynhardt, Vertex covers and eternal dominating sets, Discrete Appl. Math. 160 (2012) 1183-1190. doi:10.1016/j.dam.2011.11.034
[13] W.F. Klostermeyer and C.M. Mynhardt, Protecting a graph with mobile guards, Movement on Networks, Cambridge University Press (2014).
[14] G. Ravindra, Well covered graphs, J. Comb. Inf. Syst. Sci. 2 (1977) 20-21.
[15] F. Regan, Dynamic Variants of Domination and Independence in Graphs, Graduate Thesis, Rheinischen Friedrich-Wilhlems University, Bonn (2007).