On k-Path Pancyclic Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 271-281

Voir la notice de l'article provenant de la source Library of Science

For integers k and n with 2 ≤ k ≤ n − 1, a graph G of order n is k-path pancyclic if every path P of order k in G lies on a cycle of every length from k + 1 to n. Thus a 2-path pancyclic graph is edge-pancyclic. In this paper, we present sufficient conditions for graphs to be k-path pancyclic. For a graph G of order n ≥ 3, we establish sharp lower bounds in terms of n and k for (a) the minimum degree of G, (b) the minimum degree-sum of nonadjacent vertices of G and (c) the size of G such that G is k-path pancyclic
Keywords: Hamiltonian, panconnected, pancyclic, path Hamiltonian, path pancyclic
@article{DMGT_2015_35_2_a6,
     author = {Bi, Zhenming and Zhang, Ping},
     title = {On {k-Path} {Pancyclic} {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {271--281},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a6/}
}
TY  - JOUR
AU  - Bi, Zhenming
AU  - Zhang, Ping
TI  - On k-Path Pancyclic Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 271
EP  - 281
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a6/
LA  - en
ID  - DMGT_2015_35_2_a6
ER  - 
%0 Journal Article
%A Bi, Zhenming
%A Zhang, Ping
%T On k-Path Pancyclic Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 271-281
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a6/
%G en
%F DMGT_2015_35_2_a6
Bi, Zhenming; Zhang, Ping. On k-Path Pancyclic Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 271-281. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a6/