On k-Path Pancyclic Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 271-281
Voir la notice de l'article provenant de la source Library of Science
For integers k and n with 2 ≤ k ≤ n − 1, a graph G of order n is k-path pancyclic if every path P of order k in G lies on a cycle of every length from k + 1 to n. Thus a 2-path pancyclic graph is edge-pancyclic. In this paper, we present sufficient conditions for graphs to be k-path pancyclic. For a graph G of order n ≥ 3, we establish sharp lower bounds in terms of n and k for (a) the minimum degree of G, (b) the minimum degree-sum of nonadjacent vertices of G and (c) the size of G such that G is k-path pancyclic
Keywords:
Hamiltonian, panconnected, pancyclic, path Hamiltonian, path pancyclic
@article{DMGT_2015_35_2_a6,
author = {Bi, Zhenming and Zhang, Ping},
title = {On {k-Path} {Pancyclic} {Graphs}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {271--281},
publisher = {mathdoc},
volume = {35},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a6/}
}
Bi, Zhenming; Zhang, Ping. On k-Path Pancyclic Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 271-281. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a6/