The k-Rainbow Bondage Number of a Digraph
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 261-270.

Voir la notice de l'article provenant de la source Library of Science

Let D = (V,A) be a finite and simple digraph. A k-rainbow dominating function (k RDF) of a digraph D is a function f from the vertex set V to the set of all subsets of the set 1, 2, . . ., k such that for any vertex v ∈ V with f(v) = ∅ the condition ⋃_ u ∈ N^−(v) f(u) = 1, 2, . . ., k is fulfilled, where N^− (v) is the set of in-neighbors of v. The weight of a k RDF f is the value ω (f) = ∑_v ∈ V |f(v)|. The k-rainbow domination number of a digraph D, denoted by γ_rk (D), is the minimum weight of a k RDF of D. The k-rainbow bondage number b_rk (D) of a digraph D with maximum in-degree at least two, is the minimum cardinality of all sets A^'⊆ A for which γ_rk (D−A^' ) gt; γ_rk (D). In this paper, we establish some bounds for the k-rainbow bondage number and determine the k-rainbow bondage number of several classes of digraphs.
Keywords: k-rainbow dominating function, k-rainbow domination number, k-rainbow bondage number, digraph
@article{DMGT_2015_35_2_a5,
     author = {Amjadi, Jafar and Mohammadi, Negar and Sheikholeslami, Seyed Mahmoud and Volkmann, Lutz},
     title = {The {k-Rainbow} {Bondage} {Number} of a {Digraph}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {261--270},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a5/}
}
TY  - JOUR
AU  - Amjadi, Jafar
AU  - Mohammadi, Negar
AU  - Sheikholeslami, Seyed Mahmoud
AU  - Volkmann, Lutz
TI  - The k-Rainbow Bondage Number of a Digraph
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 261
EP  - 270
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a5/
LA  - en
ID  - DMGT_2015_35_2_a5
ER  - 
%0 Journal Article
%A Amjadi, Jafar
%A Mohammadi, Negar
%A Sheikholeslami, Seyed Mahmoud
%A Volkmann, Lutz
%T The k-Rainbow Bondage Number of a Digraph
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 261-270
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a5/
%G en
%F DMGT_2015_35_2_a5
Amjadi, Jafar; Mohammadi, Negar; Sheikholeslami, Seyed Mahmoud; Volkmann, Lutz. The k-Rainbow Bondage Number of a Digraph. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 261-270. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a5/

[1] J. Amjadi, A. Bahremandpour, S.M. Sheikholeslami and L. Volkmann, The rainbow domination number of a digraph, Kragujevac J. Math. 37 (2013) 257-268.

[2] B. Brešar, M.A. Henning and D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008) 213-225.

[3] B. Brešar and T.K. Šumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 2394-2400. doi:10.1016/j.dam.2007.07.018

[4] G.J. Chang, J. Wu and X. Zhu, Rainbow domination on trees, Discrete Appl. Math. 158 (2010) 8-12. doi:10.1016/j.dam.2009.08.010

[5] Ch. Tong, X. Lin, Y. Yang and M.Luo, 2-rainbow domination of generalized Petersen graphs P(n, 2), Discrete Appl. Math. 157 (2009) 1932-1937. doi:10.1016/j.dam.2009.01.020

[6] N. Dehgardi, S.M. Sheikholeslami and L. Volkmann, The k-rainbow bondage number of a graph, Discrete Appl. Math. 174 (2014) 133-139. doi:10.1016/j.dam.2014.05.006

[7] J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of a graph, Discrete Math. 86 (1990) 47-57. doi:10.1016/0012-365X(90)90348-L

[8] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc. New York, 1998).

[9] D. Meierling, S.M. Sheikholeslami and L. Volkmann, Nordhaus-Gaddum bounds on the k-rainbow domatic number of a graph, Appl. Math. Lett. 24 (2011) 1758-1761. doi:10.1016/j.aml.2011.04.046

[10] S.M. Sheikholeslami and L. Volkmann, The k-rainbow domatic number of a graph, Discuss. Math. Graph Theory 32 (2012) 129-140. doi:10.7151/dmgt.1591

[11] D.B. West, Introduction to Graph Theory (Prentice-Hall, Inc., 2000).

[12] Y. Wu and N. Jafari Rad, Bounds on the 2-rainbow domination number of graphs, Graphs Combin. 29 (2013) 1125-1133. doi:10.1007/s00373-012-1158-y

[13] G. Xu, 2-rainbow domination in generalized Petersen graphs P(n, 3), Discrete Appl. Math. 157 (2009) 2570-2573. doi:10.1016/j.dam.2009.03.016