Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_2_a4, author = {Wang, Yi and Fan, Yi-Zheng and Li, Xiao-Xin and Zhang, Fei-Fei}, title = {The {Least} {Eigenvalue} of {Graphs} whose {Complements} {Are} {Unicyclic}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {249--260}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a4/} }
TY - JOUR AU - Wang, Yi AU - Fan, Yi-Zheng AU - Li, Xiao-Xin AU - Zhang, Fei-Fei TI - The Least Eigenvalue of Graphs whose Complements Are Unicyclic JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 249 EP - 260 VL - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a4/ LA - en ID - DMGT_2015_35_2_a4 ER -
%0 Journal Article %A Wang, Yi %A Fan, Yi-Zheng %A Li, Xiao-Xin %A Zhang, Fei-Fei %T The Least Eigenvalue of Graphs whose Complements Are Unicyclic %J Discussiones Mathematicae. Graph Theory %D 2015 %P 249-260 %V 35 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a4/ %G en %F DMGT_2015_35_2_a4
Wang, Yi; Fan, Yi-Zheng; Li, Xiao-Xin; Zhang, Fei-Fei. The Least Eigenvalue of Graphs whose Complements Are Unicyclic. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 249-260. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a4/
[1] F.K. Bell, D. Cvetković, P. Rowlinson and S. Simić, Graph for which the least eigenvalues is minimal, I, Linear Algebra Appl. 429 (2008) 234-241. doi:10.1016/j.laa.2008.02.032
[2] F.K. Bell, D. Cvetković, P. Rowlinson and S. Simić, Graph for which the least eigenvalues is minimal, II, Linear Algebra Appl. 429 (2008) 2168-2179. doi:10.1016/j.laa.2008.06.018
[3] D. Cvetković and P. Rowlinson, The largest eigenvalues of a graph: a survey, Linear Multilinear Algebra 28 (1990) 3-33. doi:10.1080/03081089008818026
[4] D. Cvetković, P. Rowlinson and S. Simić, Spectral Generalizations of Line Graphs: on Graph with Least Eigenvalue −2 (London Math. Soc., LNS 314, Cambridge Univ. Press, 2004).
[5] Y.-Z. Fan, Y. Wang and Y.-B. Gao, Minimizing the least eigenvalues of unicyclic graphs with application to spectral spread, Linear Algebra Appl. 429 (2008) 577-588. doi:10.1016/j.laa.2008.03.012
[6] Y.-Z. Fan, F.-F Zhang and Y. Wang, The least eigenvalue of the complements of trees, Linear Algebra Appl. 435 (2011) 2150-2155. doi:10.1016/j.laa.2011.04.011
[7] Y. Hong and J. Shu, Sharp lower bounds of the least eigenvalue of planar graphs, Linear Algebra Appl. 296 (1999) 227-232. doi:10.1016/S0024-3795(99)00129-9
[8] R. Liu, M. Zhai and J. Shu, The least eigenvalues of unicyclic graphs with n vertices and k pendant vertices, Linear Algebra Appl. 431 (2009) 657-665. doi:10.1016/j.laa.2009.03.016
[9] M. Petrović, B. Borovićanin and T. Aleksić, Bicyclic graphs for which the least eigenvalue is minimum, Linear Algebra Appl. 430 (2009) 1328-1335. doi:10.1016/j.laa.2008.10.026
[10] M. Petrović, T. Aleksić and S. Simić, Further results on the least eigenvalue of connected graphs, Linear Algebra Appl. 435 (2011) 2303-2313. doi:10.1016/j.laa.2011.04.030
[11] Y.-Y. Tan and Y.-Z. Fan, The vertex (edge) independence number, vertex (edge) cover number and the least eigenvalue of a graph, Linear Algebra Appl. 433 (2010) 790-795. doi:10.1016/j.laa.2010.04.009
[12] Y. Wang, Y. Qiao and Y.-Z. Fan, On the least eigenvalue of graphs with cut vertices, J. Math. Res. Exposition 30 (2010) 951-956.
[13] Y. Wang and Y.-Z. Fan, The least eigenvalue of a graph with cut vertices, Linear Algebra Appl. 433 (2010) 19-27. doi:10.1016/j.laa.2010.01.030
[14] M.-L. Ye, Y.-Z. Fan and D. Liang, The least eigenvalue of graphs with given con- nectivity, Linear Algebra Appl. 430 (2009) 1375-1379. doi:10.1016/j.laa.2008.10.031