The Least Eigenvalue of Graphs whose Complements Are Unicyclic
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 249-260.

Voir la notice de l'article provenant de la source Library of Science

A graph in a certain graph class is called minimizing if the least eigenvalue of its adjacency matrix attains the minimum among all graphs in that class. Bell et al. have identified a subclass within the connected graphs of order n and size m in which minimizing graphs belong (the complements of such graphs are either disconnected or contain a clique of size n/2). In this paper we discuss the minimizing graphs of a special class of graphs of order n whose complements are connected and contains exactly one cycle (namely the class 𝒰_n^c of graphs whose complements are unicyclic), and characterize the unique minimizing graph in 𝒰_n^c when n ≥ 20.
Keywords: unicyclic graph, complement, adjacency matrix, least eigen- value
@article{DMGT_2015_35_2_a4,
     author = {Wang, Yi and Fan, Yi-Zheng and Li, Xiao-Xin and Zhang, Fei-Fei},
     title = {The {Least} {Eigenvalue} of {Graphs} whose {Complements} {Are} {Unicyclic}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {249--260},
     publisher = {mathdoc},
     volume = {35},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a4/}
}
TY  - JOUR
AU  - Wang, Yi
AU  - Fan, Yi-Zheng
AU  - Li, Xiao-Xin
AU  - Zhang, Fei-Fei
TI  - The Least Eigenvalue of Graphs whose Complements Are Unicyclic
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 249
EP  - 260
VL  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a4/
LA  - en
ID  - DMGT_2015_35_2_a4
ER  - 
%0 Journal Article
%A Wang, Yi
%A Fan, Yi-Zheng
%A Li, Xiao-Xin
%A Zhang, Fei-Fei
%T The Least Eigenvalue of Graphs whose Complements Are Unicyclic
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 249-260
%V 35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a4/
%G en
%F DMGT_2015_35_2_a4
Wang, Yi; Fan, Yi-Zheng; Li, Xiao-Xin; Zhang, Fei-Fei. The Least Eigenvalue of Graphs whose Complements Are Unicyclic. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 249-260. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a4/

[1] F.K. Bell, D. Cvetković, P. Rowlinson and S. Simić, Graph for which the least eigenvalues is minimal, I, Linear Algebra Appl. 429 (2008) 234-241. doi:10.1016/j.laa.2008.02.032

[2] F.K. Bell, D. Cvetković, P. Rowlinson and S. Simić, Graph for which the least eigenvalues is minimal, II, Linear Algebra Appl. 429 (2008) 2168-2179. doi:10.1016/j.laa.2008.06.018

[3] D. Cvetković and P. Rowlinson, The largest eigenvalues of a graph: a survey, Linear Multilinear Algebra 28 (1990) 3-33. doi:10.1080/03081089008818026

[4] D. Cvetković, P. Rowlinson and S. Simić, Spectral Generalizations of Line Graphs: on Graph with Least Eigenvalue −2 (London Math. Soc., LNS 314, Cambridge Univ. Press, 2004).

[5] Y.-Z. Fan, Y. Wang and Y.-B. Gao, Minimizing the least eigenvalues of unicyclic graphs with application to spectral spread, Linear Algebra Appl. 429 (2008) 577-588. doi:10.1016/j.laa.2008.03.012

[6] Y.-Z. Fan, F.-F Zhang and Y. Wang, The least eigenvalue of the complements of trees, Linear Algebra Appl. 435 (2011) 2150-2155. doi:10.1016/j.laa.2011.04.011

[7] Y. Hong and J. Shu, Sharp lower bounds of the least eigenvalue of planar graphs, Linear Algebra Appl. 296 (1999) 227-232. doi:10.1016/S0024-3795(99)00129-9

[8] R. Liu, M. Zhai and J. Shu, The least eigenvalues of unicyclic graphs with n vertices and k pendant vertices, Linear Algebra Appl. 431 (2009) 657-665. doi:10.1016/j.laa.2009.03.016

[9] M. Petrović, B. Borovićanin and T. Aleksić, Bicyclic graphs for which the least eigenvalue is minimum, Linear Algebra Appl. 430 (2009) 1328-1335. doi:10.1016/j.laa.2008.10.026

[10] M. Petrović, T. Aleksić and S. Simić, Further results on the least eigenvalue of connected graphs, Linear Algebra Appl. 435 (2011) 2303-2313. doi:10.1016/j.laa.2011.04.030

[11] Y.-Y. Tan and Y.-Z. Fan, The vertex (edge) independence number, vertex (edge) cover number and the least eigenvalue of a graph, Linear Algebra Appl. 433 (2010) 790-795. doi:10.1016/j.laa.2010.04.009

[12] Y. Wang, Y. Qiao and Y.-Z. Fan, On the least eigenvalue of graphs with cut vertices, J. Math. Res. Exposition 30 (2010) 951-956.

[13] Y. Wang and Y.-Z. Fan, The least eigenvalue of a graph with cut vertices, Linear Algebra Appl. 433 (2010) 19-27. doi:10.1016/j.laa.2010.01.030

[14] M.-L. Ye, Y.-Z. Fan and D. Liang, The least eigenvalue of graphs with given con- nectivity, Linear Algebra Appl. 430 (2009) 1375-1379. doi:10.1016/j.laa.2008.10.031