Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2015_35_2_a2, author = {Wang, Ruixia}, title = {(K \ensuremath{-} {1)-Kernels} {In} {Strong} {K-Transitive} {Digraphs}}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {229--235}, publisher = {mathdoc}, volume = {35}, number = {2}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a2/} }
Wang, Ruixia. (K − 1)-Kernels In Strong K-Transitive Digraphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 2, pp. 229-235. http://geodesic.mathdoc.fr/item/DMGT_2015_35_2_a2/
[1] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Applications (Springer, London, 2000).
[2] E. Boros and V. Gurvich, Perfect graphs, kernels, and cores of cooperative games, Discrete Math. 306 (2006) 2336-2354. doi:10.1016/j.disc.2005.12.031
[3] V. Chvátal, On the computational complexity of finding a kernel, Report No. CRM-300, Centre de Recherches Mathematiques, Universite de Montreal (1973).
[4] C. Hernández-Cruz and H. Galeana-Sánchez, k-kernels in k-transitive and k-quasitransitive digraphs, Discrete Math. 312 (2012) 2522-2530. doi:10.1016/j.disc.2012.05.005
[5] C. Hernández-Cruz, 3-transitive digraphs, Discuss. Math. Graph Theory 32 (2012) 205-219. doi:10.7151/dmgt.1613
[6] C. Hernández-Cruz, 4-transitive digraphs I: the structure of strong transitive digraphs, Discuss. Math. Graph Theory 33 (2013) 247-260. doi:10.7151/dmgt.1645
[7] C. Hernández-Cruz and J.J. Montellano-Ballesteros, Some remarks on the structure of strong k-transitive digraphs, Discuss. Math. Graph Theory 34 (2014) 651-671. doi:10.7151/dmgt.1765
[8] H. Galeana-Sánchez, C. Hernández-Cruz and M.A. Juárez-Camacho, On the existence and number of (k+1)-kings in k-quasi-transitive digraphs, Discrete Math. 313 (2013) 2582-2591. doi:10.1016/j.disc.2013.08.007
[9] M. Kwásnik, On (k, l)-kernels on graphs and their products, Doctoral Dissertation, Technical University of Wroc law, Wroc law, 1980.