Maximum Cycle Packing in Eulerian Graphs Using Local Traces
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 121-132
Voir la notice de l'article provenant de la source Library of Science
For a graph G = (V,E) and a vertex v ∈ V, let T(v) be a local trace at v, i.e. T(v) is an Eulerian subgraph of G such that every walk W(v), with start vertex v can be extended to an Eulerian tour in T(v). We prove that every maximum edge-disjoint cycle packing Z* of G induces a maximum trace T(v) at v for every v ∈ V. Moreover, if G is Eulerian then sufficient conditions are given that guarantee that the sets of cycles inducing maximum local traces of G also induce a maximum cycle packing of G.
Keywords:
edge-disjoint cycle packing, local traces, extremal problems in graph theory
@article{DMGT_2015_35_1_a9,
author = {Recht, Peter and Sprengel, Eva-Maria},
title = {Maximum {Cycle} {Packing} in {Eulerian} {Graphs} {Using} {Local} {Traces}},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {121--132},
publisher = {mathdoc},
volume = {35},
number = {1},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a9/}
}
TY - JOUR AU - Recht, Peter AU - Sprengel, Eva-Maria TI - Maximum Cycle Packing in Eulerian Graphs Using Local Traces JO - Discussiones Mathematicae. Graph Theory PY - 2015 SP - 121 EP - 132 VL - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a9/ LA - en ID - DMGT_2015_35_1_a9 ER -
Recht, Peter; Sprengel, Eva-Maria. Maximum Cycle Packing in Eulerian Graphs Using Local Traces. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 121-132. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a9/