Packing Parameters in Graphs
Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 5-16.

Voir la notice de l'article provenant de la source Library of Science

In a graph G = (V,E), a non-empty set S ⊆ V is said to be an open packing set if no two vertices of S have a common neighbour in G. An open packing set which is not a proper subset of any open packing set is called a maximal open packing set. The minimum and maximum cardinalities of a maximal open packing set are respectively called the lower open packing number and the open packing number and are denoted by ρ^L_o and ρ^o. In this paper, we present some bounds on these parameters.
Keywords: packing number, open packing number
@article{DMGT_2015_35_1_a0,
     author = {Sahul Hamid, I. and Saravanakumar, S.},
     title = {Packing {Parameters} in {Graphs}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {5--16},
     publisher = {mathdoc},
     volume = {35},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a0/}
}
TY  - JOUR
AU  - Sahul Hamid, I.
AU  - Saravanakumar, S.
TI  - Packing Parameters in Graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2015
SP  - 5
EP  - 16
VL  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a0/
LA  - en
ID  - DMGT_2015_35_1_a0
ER  - 
%0 Journal Article
%A Sahul Hamid, I.
%A Saravanakumar, S.
%T Packing Parameters in Graphs
%J Discussiones Mathematicae. Graph Theory
%D 2015
%P 5-16
%V 35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a0/
%G en
%F DMGT_2015_35_1_a0
Sahul Hamid, I.; Saravanakumar, S. Packing Parameters in Graphs. Discussiones Mathematicae. Graph Theory, Tome 35 (2015) no. 1, pp. 5-16. http://geodesic.mathdoc.fr/item/DMGT_2015_35_1_a0/

[1] N. Biggs, Perfect codes in graphs, J. Combin. Theory (B) 15 (1973) 289-296. doi:10.1016/0095-8956(73)90042-7

[2] G. Chartrand and L. Lesniak, Graphs and Digraphs, Fourth Edition (CRC Press, Boca Raton, 2005).

[3] L. Clark, Perfect domination in random graphs, J. Combin. Math. Combin. Comput. 14 (1993) 173-182.

[4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1988).

[5] M.A. Henning, Packing in trees, Discrete Math. 186 (1998) 145-155. doi:10.1016/S0012-365X(97)00228-8

[6] A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree, Pacific J. Math. 61 (1975) 225-233. doi:10.2140/pjm.1975.61.225

[7] J. Topp and L. Volkmann, On packing and covering number of graphs, Discrete Math. 96 (1991) 229-238. doi:10.1016/0012-365X(91)90316-T