Centrosymmetric graphs and a lower bound for graph energy of fullerenes
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 751-768.

Voir la notice de l'article provenant de la source Library of Science

The energy of a molecular graph G is defined as the summation of the absolute values of the eigenvalues of adjacency matrix of a graph G. In this paper, an infinite class of fullerene graphs with 10n vertices, n ≥ 2, is considered. By proving centrosymmetricity of the adjacency matrix of these fullerene graphs, a lower bound for its energy is given. Our method is general and can be extended to other class of fullerene graphs.
Keywords: centrosymmetric matrix, fullerene graph, energy
@article{DMGT_2014_34_4_a7,
     author = {Katona, Gyula Y. and Faghani, Morteza and Ashrafi, Ali Reza},
     title = {Centrosymmetric graphs and a lower bound for graph energy of fullerenes},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {751--768},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a7/}
}
TY  - JOUR
AU  - Katona, Gyula Y.
AU  - Faghani, Morteza
AU  - Ashrafi, Ali Reza
TI  - Centrosymmetric graphs and a lower bound for graph energy of fullerenes
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 751
EP  - 768
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a7/
LA  - en
ID  - DMGT_2014_34_4_a7
ER  - 
%0 Journal Article
%A Katona, Gyula Y.
%A Faghani, Morteza
%A Ashrafi, Ali Reza
%T Centrosymmetric graphs and a lower bound for graph energy of fullerenes
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 751-768
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a7/
%G en
%F DMGT_2014_34_4_a7
Katona, Gyula Y.; Faghani, Morteza; Ashrafi, Ali Reza. Centrosymmetric graphs and a lower bound for graph energy of fullerenes. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 751-768. http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a7/

[1] A. Cantoni and P. Buter, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl. 13 (1976) 275-288. doi:10.1016/0024-3795(76)90101-4

[2] D. Cvetković, M. Doob, I. Gutman and A. Torgašev, Recent Results in the Theory of Graph Spectra (North-Holland Publishing Co., Amsterdam, 1988).

[3] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra (Cambridge University Press, Cambridge, 2010).

[4] P.W. Fowler and D.E. Manolopoulos, An Atlas of Fullerenes (Clarendom Press, Oxford, 1995).

[5] P.W. Fowler and W. Myrvold, Most fullerenes have no centrosymmetric labelling, MATCH Commun. Math. Comput. Chem. 71 (2014) 93-97.

[6] A. Graovac, O. Ori, M. Faghani and A.R. Ashrafi, Distance property of fullerenes, Iranian J. Math. Chem. 2 (2011) 99-107.

[7] I. Gutman, The energy of a graph, Ber. Math.-Statist. Sekt. Forsch. Graz 103 (1978) 1-22.

[8] I. Gutman, Bounds for all graph energies, Chem. Phys. Lett. 528 (2012) 72-74.

[9] I. Gutman and B. Zhou, Laplacian energy of a graph, Linear Algebra Appl. 414 (2006) 29-37. doi:10.1016/j.laa.2005.09.008

[10] I. Gutman, S. Zare Firoozabadi, J.A. de la Peña and J. Rada, On the energy of regular graphs, MATCH Commun. Math. Comput. Chem. 57 (2007) 435-442.

[11] H. Hua, M. Faghani and A.R. Ashrafi, The Wiener and Wiener polarity indices of a class of fullerenes with exactly 12n carbon atoms, MATCH Commun. Math. Comput. Chem. 71 (2014) 361-372.

[12] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley, C60 : buckminsterfullerene, Nature 318 (1985) 162-163. doi:10.1038/318162a0

[13] Z. Liu and H. Faßbender, Some properties of generalized K-centrosymmetric H-matrices, J. Comput. Appl. Math. 215 (2008) 38-48. doi:10.1016/j.cam.2007.03.026

[14] Z.-Y. Liu, Some properties of centrosymmetric matrices, Appl. Math. Comput. 141 (2003) 297-306. doi:10.1016/S0096-3003(02)00254-0

[15] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl. 326 (2007) 1472-1475. doi:10.1016/j.jmaa.2006.03.072

[16] O. Rojo and H. Rojo, Some results on symmetric circulant matrices and on symmetric centrosymmetric matrices, Linear Algebra Appl. 392 (2004) 211-233. doi:10.1016/j.laa.2004.06.013