Extremal unicyclic graphs with minimal distance spectral radius
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 735-749.

Voir la notice de l'article provenant de la source Library of Science

The distance spectral radius ρ(G) of a graph G is the largest eigenvalue of the distance matrix D(G). Let 𝒰 (n,m) be the class of unicyclic graphs of order n with given matching number m (m ≠ 3). In this paper, we determine the extremal unicyclic graph which has minimal distance spectral radius in 𝒰 (n,m) C_n.
Keywords: distance matrix, distance spectral radius, unicyclic graph, matching
@article{DMGT_2014_34_4_a6,
     author = {Lu, Hongyan and Luo, Jing and Zhu, Zhongxun},
     title = {Extremal unicyclic graphs with minimal distance spectral radius},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {735--749},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a6/}
}
TY  - JOUR
AU  - Lu, Hongyan
AU  - Luo, Jing
AU  - Zhu, Zhongxun
TI  - Extremal unicyclic graphs with minimal distance spectral radius
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 735
EP  - 749
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a6/
LA  - en
ID  - DMGT_2014_34_4_a6
ER  - 
%0 Journal Article
%A Lu, Hongyan
%A Luo, Jing
%A Zhu, Zhongxun
%T Extremal unicyclic graphs with minimal distance spectral radius
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 735-749
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a6/
%G en
%F DMGT_2014_34_4_a6
Lu, Hongyan; Luo, Jing; Zhu, Zhongxun. Extremal unicyclic graphs with minimal distance spectral radius. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 735-749. http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a6/

[1] A.T. Balaban, D. Ciubotariu and M. Medeleanu, Topological indices and real number vertex invariants based on graph eigenvalues or eigenvectors, J. Chem. Inf. Comput. Sci. 31 (1991) 517-523. doi:10.1021/ci00004a014

[2] R.B. Bapat, Distance matrix and Laplacian of a tree with attached graphs, Linear Algebra Appl. 411 (2005) 295-308. doi:10.1016/j.laa.2004.06.017

[3] R.B. Bapat, S.J. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193-209. doi:10.1016/j.laa.2004.05.011

[4] B. Bollobás, Modern Graph Theory (Springer-Verlag, 1998). doi:10.1007/978-1-4612-0619-4

[5] V. Consonni and R. Todeschini, New spectral indices for molecule description, MATCH Commun. Math. Comput. Chem. 60 (2008) 3-14.

[6] I. Gutman and M. Medeleanu, On the structure-dependence of the largest eigenvalue of the distance matrix of an alkane, Indian J. Chem. (A) 37 (1998) 569-573.

[7] A. Ilić, Distance spectral radius of trees with given matching number, Discrete Appl. Math. 158 (2010) 1799-1806. doi:10.1016/j.dam.2010.06.018

[8] G. Indulal, Sharp bounds on the distance spectral radius and the distance energy of graphs, Linear Algebra Appl. 430 (2009) 106-113. doi:10.1016/j.laa.2008.07.005

[9] Z. Liu, On spectral radius of the distance matrix, Appl. Anal. Discrete Math. 4 (2010) 269-277. doi:10.2298/AADM100428020L

[10] D. Stevanović and A. Ili´c, Distance spectral radius of trees with fixed maximum degree, Electron. J. Linear Algebra 20 (2010) 168-179.

[11] G. Yu, Y. Wu, Y. Zhang and J. Shu, Some graft transformations and its application on a distance spectrum, Discrete Math. 311 (2011) 2117-2123. doi:10.1016/j.disc.2011.05.040

[12] X. Zhang and C. Godsil, Connectivity and minimal distance spectral radius, Linear Multilinear Algebra 59 (2011) 745-754. doi:10.1080/03081087.2010.499512

[13] B. Zhou, On the largest eigenvalue of the distance matrix of a tree, MATCH Commun. Math. Comput. Chem. 58 (2007) 657-662.

[14] B. Zhou and N. Trinajsti´c, On the largest eigenvalue of the distance matrix of a connected graph, Chem. Phys. Lett. 447 (2007) 384-387. doi:10.1016/j.cplett.2007.09.048