On super edge-antimagic total labeling of subdivided stars
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 691-706.

Voir la notice de l'article provenant de la source Library of Science

In 1980, Enomoto et al. proposed the conjecture that every tree is a super (a, 0)-edge-antimagic total graph. In this paper, we give a partial support for the correctness of this conjecture by formulating some super (a, d)-edge-antimagic total labelings on a subclass of subdivided stars denoted by T(n, n + 1, 2n + 1, 4n + 2, n_5, n_6, . . ., n_r) for different values of the edge-antimagic labeling parameter d, where n ≥ 3 is odd, n_m = 2^m−4(4n+1)+1, r ≥ 5 and 5 ≤ m ≤ r.
Keywords: subdivision of star, super ($a, d$)-EAT labeling
@article{DMGT_2014_34_4_a3,
     author = {Javaid, Muhammad},
     title = {On super edge-antimagic total labeling of subdivided stars},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {691--706},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a3/}
}
TY  - JOUR
AU  - Javaid, Muhammad
TI  - On super edge-antimagic total labeling of subdivided stars
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 691
EP  - 706
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a3/
LA  - en
ID  - DMGT_2014_34_4_a3
ER  - 
%0 Journal Article
%A Javaid, Muhammad
%T On super edge-antimagic total labeling of subdivided stars
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 691-706
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a3/
%G en
%F DMGT_2014_34_4_a3
Javaid, Muhammad. On super edge-antimagic total labeling of subdivided stars. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 691-706. http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a3/

[1] M. Bača, Y. Lin, M. Miller and M.Z. Youssef, Edge-antimagic graphs, Discrete Math. 307 (2007) 1232-1244. doi:10.1016/j.disc.2005.10.038

[2] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Util. Math. 60 (2001) 229-239.

[3] M. Bača, Y. Lin and F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Util. Math. 73 (2007) 117-128.

[4] M. Bača and M. Miller, Super Edge-Antimagic Graphs (Brown Walker Press, Boca Raton, Florida USA, 2008).

[5] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105-109.

[6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2011) #DS6.

[7] M. Hussain, E.T. Baskoro and Slamin, On super edge-magic total labeling of banana trees, Util. Math. 79 (2009) 243-251.

[8] M. Javaid, M. Hussain, K. Ali and H. Shaker, On super edge-magic total labeling on subdivision of trees, Util. Math. 89 (2012) 169-177.

[9] M. Javaid and A.A. Bhatti, On super (a, d)-edge antimagic total labeling of subdivided stars, Ars Combin. 105 (2012) 503-512.

[10] M. Javaid, A.A. Bhatti and M. Hussain, On (a, d)-edge-antimagic total labeling of extended w-trees, Util. Math. 87 (2012) 293-303.

[11] M. Javaid, M. Hussain, K. Ali and K.H. Dar, Super edge-magic total labeling on w-trees, Util. Math. 86 (2011) 183-191.

[12] M. Javaid, A.A. Bhatti, M. Hussain and K. Ali, Super edge-magic total labeling on forest of extended w-trees, Util. Math. 91 (2013) 155-162.

[13] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461. doi:10.4153/CMB-1970-084-1

[14] A. Kotzig and A. Rosa, Magic Valuation of Complete Graphs (Centre de Recherches Mathematiques, Uni. de Montreal, 1972).

[15] S.M. Lee and Q.X. Shah, All trees with at most 17 vertices are super edge-magic, in: 16th MCCCC Conference, Carbondale SIU (2002).

[16] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic, College Mathematica 17(2) (2001) 41-44.

[17] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic (II), College Mathematica 20(3) (2004) 51-53.

[18] A.A.G. Ngurah, R. Simanjuntak and E.T. Baskoro, On (super) edge-magic total labeling of subdivision of K1,3, SUT J. Math. 43 (2007) 127-136.

[19] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On super edge-magic total labeling of a subdivision of a star Sn, Util. Math. 81 (2010) 275-284.

[20] K.A. Sugeng, M. Miller, Slamin and M. Bača, (a, d)-edge-antimagic total labelings of caterpillars, Lect. Notes Comput. Sci. 3330 (2005) 169-180. doi:10.1007/978-3-540-30540-8 19

[21] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, in: Proc. 11th Australian Workshop on Combin. Algor. 11 (2000) 179-189.

[22] D.B. West, An Introduction to Graph Theory (Prentice Hall, 1996).