Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_4_a3, author = {Javaid, Muhammad}, title = {On super edge-antimagic total labeling of subdivided stars}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {691--706}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a3/} }
Javaid, Muhammad. On super edge-antimagic total labeling of subdivided stars. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 691-706. http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a3/
[1] M. Bača, Y. Lin, M. Miller and M.Z. Youssef, Edge-antimagic graphs, Discrete Math. 307 (2007) 1232-1244. doi:10.1016/j.disc.2005.10.038
[2] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New constructions of magic and antimagic graph labelings, Util. Math. 60 (2001) 229-239.
[3] M. Bača, Y. Lin and F.A. Muntaner-Batle, Super edge-antimagic labelings of the path-like trees, Util. Math. 73 (2007) 117-128.
[4] M. Bača and M. Miller, Super Edge-Antimagic Graphs (Brown Walker Press, Boca Raton, Florida USA, 2008).
[5] H. Enomoto, A.S. Lladó, T. Nakamigawa and G. Ringel, Super edge-magic graphs, SUT J. Math. 34 (1998) 105-109.
[6] J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2011) #DS6.
[7] M. Hussain, E.T. Baskoro and Slamin, On super edge-magic total labeling of banana trees, Util. Math. 79 (2009) 243-251.
[8] M. Javaid, M. Hussain, K. Ali and H. Shaker, On super edge-magic total labeling on subdivision of trees, Util. Math. 89 (2012) 169-177.
[9] M. Javaid and A.A. Bhatti, On super (a, d)-edge antimagic total labeling of subdivided stars, Ars Combin. 105 (2012) 503-512.
[10] M. Javaid, A.A. Bhatti and M. Hussain, On (a, d)-edge-antimagic total labeling of extended w-trees, Util. Math. 87 (2012) 293-303.
[11] M. Javaid, M. Hussain, K. Ali and K.H. Dar, Super edge-magic total labeling on w-trees, Util. Math. 86 (2011) 183-191.
[12] M. Javaid, A.A. Bhatti, M. Hussain and K. Ali, Super edge-magic total labeling on forest of extended w-trees, Util. Math. 91 (2013) 155-162.
[13] A. Kotzig and A. Rosa, Magic valuations of finite graphs, Canad. Math. Bull. 13 (1970) 451-461. doi:10.4153/CMB-1970-084-1
[14] A. Kotzig and A. Rosa, Magic Valuation of Complete Graphs (Centre de Recherches Mathematiques, Uni. de Montreal, 1972).
[15] S.M. Lee and Q.X. Shah, All trees with at most 17 vertices are super edge-magic, in: 16th MCCCC Conference, Carbondale SIU (2002).
[16] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic, College Mathematica 17(2) (2001) 41-44.
[17] Y.-J. Lu, A proof of three-path trees P(m, n, t) being edge-magic (II), College Mathematica 20(3) (2004) 51-53.
[18] A.A.G. Ngurah, R. Simanjuntak and E.T. Baskoro, On (super) edge-magic total labeling of subdivision of K1,3, SUT J. Math. 43 (2007) 127-136.
[19] A.N.M. Salman, A.A.G. Ngurah and N. Izzati, On super edge-magic total labeling of a subdivision of a star Sn, Util. Math. 81 (2010) 275-284.
[20] K.A. Sugeng, M. Miller, Slamin and M. Bača, (a, d)-edge-antimagic total labelings of caterpillars, Lect. Notes Comput. Sci. 3330 (2005) 169-180. doi:10.1007/978-3-540-30540-8 19
[21] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, in: Proc. 11th Australian Workshop on Combin. Algor. 11 (2000) 179-189.
[22] D.B. West, An Introduction to Graph Theory (Prentice Hall, 1996).