The connectivity of domination dot-critical graphs with no critical vertices
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 683-690
Cet article a éte moissonné depuis la source Library of Science
An edge of a graph is called dot-critical if its contraction decreases the domination number. A graph is said to be dot-critical if all of its edges are dot-critical. A vertex of a graph is called critical if its deletion decreases the domination number. In A note on the domination dot-critical graphs, Discrete Appl. Math. 157 (2009) 3743-3745, Chen and Shiu constructed for each even integer k ≥ 4 infinitely many k-dot-critical graphs G with no critical vertices and κ(G) = 1. In this paper, we refine their result and construct for integers k ≥ 4 and l ≥ 1 infinitely many k-dot-critical graphs G with no critical vertices, κ(G) = 1 and λ(G) = l. Furthermore, we prove that every 3-dot- critical graph with no critical vertices is 3-connected, and it is best possible.
Keywords:
dot-critical graph, critical vertex, connectivity
@article{DMGT_2014_34_4_a2,
author = {Furuya, Michitaka},
title = {The connectivity of domination dot-critical graphs with no critical vertices},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {683--690},
year = {2014},
volume = {34},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a2/}
}
Furuya, Michitaka. The connectivity of domination dot-critical graphs with no critical vertices. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 683-690. http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a2/
[1] T. Burton and D.P. Sumner, Domination dot-critical graphs, Discrete Math. 306 (2006) 11-18. doi:10.1016/j.disc.2005.06.029
[2] X. Chen and W.C. Shiu, A note on the domination dot-critical graphs, Discrete Appl. Math. 157 (2009) 3743-3745. doi:10.1016/j.dam.2009.07.014
[3] R. Diestel, Graph Theory 4th Edition (Verlag, Heidelberg, Springer, 2010).
[4] M. Furuya and M. Takatou, Upper bound on the diameter of a domination dot-critical graph, Graphs Combin. 29 (2013) 79-85. doi:10.1007/s00373-011-1095-1
[5] D.A. Mojdeh and S. Mirzamani, On the diameter of dot-critical graphs, Opuscula Math. 29 (2009) 165-175.
[6] N.J. Rad, On the diameter of a domination dot-critical graph, Discrete Appl. Math. 157 (2009) 1647-1649. doi:10.1016/j.dam.2008.10.015