The smallest nonevasive graph property
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 857-862

Voir la notice de l'article provenant de la source Library of Science

A property of n-vertex graphs is called evasive if every algorithm testing this property by asking questions of the form “is there an edge between vertices u and v” requires, in the worst case, to ask about all pairs of vertices. Most “natural” graph properties are either evasive or conjectured to be such, and of the few examples of nontrivial nonevasive properties scattered in the literature the smallest one has n = 6. We exhibit a nontrivial, nonevasive property of 5-vertex graphs and show that it is essentially the unique such with n ≤ 5.
Keywords: graph properties, evasiveness, complexity
@article{DMGT_2014_34_4_a13,
     author = {Adamaszek, Micha{\l}},
     title = {The smallest nonevasive graph property},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {857--862},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a13/}
}
TY  - JOUR
AU  - Adamaszek, Michał
TI  - The smallest nonevasive graph property
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 857
EP  - 862
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a13/
LA  - en
ID  - DMGT_2014_34_4_a13
ER  - 
%0 Journal Article
%A Adamaszek, Michał
%T The smallest nonevasive graph property
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 857-862
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a13/
%G en
%F DMGT_2014_34_4_a13
Adamaszek, Michał. The smallest nonevasive graph property. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 857-862. http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a13/