@article{DMGT_2014_34_4_a13,
author = {Adamaszek, Micha{\l}},
title = {The smallest nonevasive graph property},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {857--862},
year = {2014},
volume = {34},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a13/}
}
Adamaszek, Michał. The smallest nonevasive graph property. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 857-862. http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a13/
[1] M.R. Best, P. van Emde Boas and H.W. Lenstra, A sharpened version of the Aanderaa-Rosenberg conjecture, Afd. Zuivere Wisk. 30/74 (1974).
[2] C.E. Chronaki, A survey of evasivness: lower bounds on decision-tree complexity of Boolean functions, The University of Rochester Tech. Report (1990), available from www.ics.forth.gr/~chronaki/papers/ur/eve.ps.
[3] J. Kahn, M. Saks and D. Sturtevant, A topological approach to evasiveness, Combinatorica 4 (1984) 249-315. doi:10.1007/BF02579140
[4] D. Kozlov, Combinatorial Algebraic Topology (Algorithms and Computation in Mathematics, Vol. 21, Springer-Verlag Berlin Heidelberg, 2008).
[5] M. de Longueville, A Course in Topological Combinatorics (Universitext, Springer New York, 2013).
[6] L. Lovász and N. Young, Lecture Notes on Evasiveness of Graph Properties, Tech. Rep. CS-TR-317-91, Computer Science Dept., Princeton University, available from arxiv/0205031.
[7] E.C. Milner and D.J.A. Welsh, On the computational complexity of graph theoretical properties, Proc. 5th British Comb. Conf. Aberdeen 1975 (1976) 471-487.
[8] The On-Line Encyclopedia of Integer Sequences, published electronically at oeis.org.
[9] V. Welker, Constructions preserving evasiveness and collapsibility, Discrete Math. 207 (1999) 243-255. doi:10.1016/S0012-365X(99)00049-7