A note on vertex colorings of plane graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 849-855.

Voir la notice de l'article provenant de la source Library of Science

Given an integer valued weighting of all elements of a 2-connected plane graph G with vertex set V, let c(v) denote the sum of the weight of v ∈ V and of the weights of all edges and all faces incident with v. This vertex coloring of G is proper provided that c(u) ≠ c(v) for any two adjacent vertices u and v of G. We show that for every 2-connected plane graph there is such a proper vertex coloring with weights in 1, 2, 3. In a special case, the value 3 is improved to 2.
Keywords: plane graph, vertex coloring
@article{DMGT_2014_34_4_a12,
     author = {Fabrici, Igor and Jendrol{\textquoteright}, Stanislav and Sot\'ak, Roman},
     title = {A note on vertex colorings of plane graphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {849--855},
     publisher = {mathdoc},
     volume = {34},
     number = {4},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a12/}
}
TY  - JOUR
AU  - Fabrici, Igor
AU  - Jendrol’, Stanislav
AU  - Soták, Roman
TI  - A note on vertex colorings of plane graphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 849
EP  - 855
VL  - 34
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a12/
LA  - en
ID  - DMGT_2014_34_4_a12
ER  - 
%0 Journal Article
%A Fabrici, Igor
%A Jendrol’, Stanislav
%A Soták, Roman
%T A note on vertex colorings of plane graphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 849-855
%V 34
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a12/
%G en
%F DMGT_2014_34_4_a12
Fabrici, Igor; Jendrol’, Stanislav; Soták, Roman. A note on vertex colorings of plane graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 849-855. http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a12/

[1] L. Addario-Berry, K. Dalal, C. McDiarmid, B.A. Reed and A. Thomason, Vertexcoloring edge-weigtings, Combinatorica 27 (2007) 1-12. doi:10.1007/s00493-007-0041-6

[2] L. Addario-Berry, K. Dalaland and B.A. Reed, Degree constrainted subgraphs, Discrete Appl. Math. 156 (2008) 1168-1174. doi:10.1016/j.dam.2007.05.059

[3] K. Appel and W. Haken, Every planar map is four-colorable, I. Discharging, Illinois J. Math. 21 (1977) 429-490.

[4] M. Axenovich, J. Harant, J. Przyby lo, R. Soták and M. Voigt, A note on adjacent vertex distinguishing colorings number of graphs, Electron. J. Combin. (submitted).

[5] M. Bača, S. Jendrol’, M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388. doi:10.1016/j.disc.2005.11.075

[6] T. Bartnicki, B. Bosek, S. Czerwiński, J. Grytczuk, G. Matecki and W. Żelazny, Additive colorings of planar graphs, Graphs Combin. 30 (2014) 1087-1098. doi:10.1007/s00373-013-1331-y

[7] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer, 2008).

[8] G. Chartrand, M.S. Jacobson, L. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.

[9] S. Czerwiński, J. Grytczuk and W. Żelazny, Lucky labelings of graphs, Inform. Process. Lett. 109 (2009) 1078-1081. doi:10.1016/j.ipl.2009.05.011

[10] R. Diestel, Graph Theory (Springer, 2000).

[11] A. Frieze, R.J. Gould, M. Karoński and F. Pfender, On graph irregularity strenght, J. Graph Theory 41 (2002) 120-137. doi:10.1002/jgt.10056

[12] S. Jendrol’ and P. Šugerek, A note on face coloring entire weightings of plane graphs, Discuss. Math. Graph Theory 34 (2014) 421-426. doi:10.7151/dmgt.1738

[13] T.R. Jensen and B. Toft, Graph Coloring Problems (Wiley, 1995).

[14] M. Kalkowski, A note on 1, 2-conjecture, Electron. J. Combin. (to appear).

[15] M. Kalkowski, M. Karoński and F. Pfender, Vertex-coloring edge-weightings: towards the 1-2-3-conjecture, J. Combin. Theory (B) 100 (2010) 347-349. doi:10.1016/j.jctb.2009.06.002

[16] M. Karoński and T. Luczak, A. Thomason, Edge weights and vertex colors, J. Combin. Theory (B) 91 (2004) 151-157. doi:10.1016/j.jctb.2003.12.001

[17] J. Przyby lo and M. Woźniak, On 1, 2 conjecture, Discrete Math. Theor. Comput. Sci. 12 (2010) 101-108.

[18] T. Wang and Q. Yu, On vertex-coloring 13-edge-weighting, Front. Math. China 3 (2008) 1-7. doi:10.1007/s11461-008-0009-8

[19] W. Wang and X. Zhu, Entire coloring of plane graphs, J. Combin. Theory (B) 101 (2011) 490-501. doi:10.1016/j.jctb.2011.02.006