Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_4_a10, author = {Birnbaum, Isaac and Kuneli, Megan and McDonald, Robyn and Urabe, Katherine and Vega, Oscar}, title = {The well-covered dimension of products of graphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {811--827}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a10/} }
TY - JOUR AU - Birnbaum, Isaac AU - Kuneli, Megan AU - McDonald, Robyn AU - Urabe, Katherine AU - Vega, Oscar TI - The well-covered dimension of products of graphs JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 811 EP - 827 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a10/ LA - en ID - DMGT_2014_34_4_a10 ER -
%0 Journal Article %A Birnbaum, Isaac %A Kuneli, Megan %A McDonald, Robyn %A Urabe, Katherine %A Vega, Oscar %T The well-covered dimension of products of graphs %J Discussiones Mathematicae. Graph Theory %D 2014 %P 811-827 %V 34 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a10/ %G en %F DMGT_2014_34_4_a10
Birnbaum, Isaac; Kuneli, Megan; McDonald, Robyn; Urabe, Katherine; Vega, Oscar. The well-covered dimension of products of graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 811-827. http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a10/
[1] J.I. Brown and R.J. Nowakowski, Well-covered vector spaces of graphs, SIAM J. Discrete Math. 19 (2005) 952-965. doi:10.1137/S0895480101393039
[2] Y. Caro, M.N. Ellingham and J.E. Ramey, Local structure when all maximal independent sets have equal weight, SIAM J. Discrete Math. 11 (1998) 644-654. doi:10.1137/S0895480196300479
[3] Y. Caro and R. Yuster, The uniformity space of hypergraphs and its applications, Discrete Math. 202 (1999) 1-19. doi:10.1016/S0012-365X(98)00344-6
[4] A. Ovetsky, On the well-coveredness of Cartesian products of graphs, Discrete Math. 309 (2009) 238-246. doi:10.1016/j.disc.2007.12.083
[5] M.D. Plummer, Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98. doi:10.1016/S0021-9800(70)80011-4
[6] D.B. West, Introduction to Graph Theory, Second Edition (Prentice Hall, Upper Saddle River, 2001).