Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_4_a0, author = {Hern\'andez-Cruz, C\'esar and Montellano-Ballesteros, Juan Jos\'e}, title = {Some remarks on the structure of strong $k$-transitive digraphs}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {651--671}, publisher = {mathdoc}, volume = {34}, number = {4}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a0/} }
TY - JOUR AU - Hernández-Cruz, César AU - Montellano-Ballesteros, Juan José TI - Some remarks on the structure of strong $k$-transitive digraphs JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 651 EP - 671 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a0/ LA - en ID - DMGT_2014_34_4_a0 ER -
%0 Journal Article %A Hernández-Cruz, César %A Montellano-Ballesteros, Juan José %T Some remarks on the structure of strong $k$-transitive digraphs %J Discussiones Mathematicae. Graph Theory %D 2014 %P 651-671 %V 34 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a0/ %G en %F DMGT_2014_34_4_a0
Hernández-Cruz, César; Montellano-Ballesteros, Juan José. Some remarks on the structure of strong $k$-transitive digraphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 4, pp. 651-671. http://geodesic.mathdoc.fr/item/DMGT_2014_34_4_a0/
[1] J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications (Springer-Verlag Berlin, Heidelberg New York, 2002).
[2] R. Diestel, Graph Theory 3rd Edition (Springer-Verlag Berlin, Heidelberg New York, 2005).
[3] H. Galeana-Sánchez and C. Hernández-Cruz, k-kernels in k-transitive and k-quasi-transitive digraphs, Discrete Math. 312 (2012) 2522-2530. doi:10.1016/j.disc.2012.05.005
[4] A. Ghouila-Houri, Caractérisation des graphes non orientés dont on peut orienterles arrêtes de manière à obtenir le graphe d’une relation d’ordre, C. R. Acad. Sci. Paris 254 (1962) 1370-1371.
[5] C. Hernández-Cruz, 3-transitive digraphs, Discuss. Math. Graph Theory 32 (2012) 205-219. doi:10.7151/dmgt.1613
[6] C. Hernández-Cruz, 4-transitive digraphs I: The structure of strong 4-transitive digraphs, Discuss. Math. Graph Theory 33 (2013) 247-260. doi:10.7151/dmgt.1645
[7] J.M. Laborde, C. Payan and N.H. Xuong, Independent sets and longest directed paths in digraphs, in: Graphs and other Combinatorial Topics, Prague, M. Fiedler (Ed(s)), (Teubner, Leipzig, 1983) 173-177.
[8] R. Wang, A conjecture on k-transitive digraphs, Discrete Math. 312 (2012) 1458-1460. doi:0.1016/j.disc.2012.01.011
[9] R. Wang and S. Wang, Underlying graphs of 3-quasi-transitive digraphs and 3- transitive digraphs, Discuss. Math. Graph Theory 33 (2013) 429-436. doi:10.7151/dmgt.1680