Tetravalent arc-transitive graphs of order $3p^2$
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 567-575
Voir la notice de l'article provenant de la source Library of Science
Let s be a positive integer. A graph is s-transitive if its automorphism group is transitive on s-arcs but not on (s + 1)-arcs. Let p be a prime. In this article a complete classification of tetravalent s-transitive graphs of order 3p^2 is given.
Keywords:
s-transitive graphs, symmetric graphs, Cayley graphs
@article{DMGT_2014_34_3_a8,
author = {Ghasemi, Mohsen},
title = {Tetravalent arc-transitive graphs of order $3p^2$},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {567--575},
publisher = {mathdoc},
volume = {34},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a8/}
}
Ghasemi, Mohsen. Tetravalent arc-transitive graphs of order $3p^2$. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 567-575. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a8/