Characterization of cubic graphs $G$ with $ir_t(G)=IR_t(G)=2$
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 559-565.

Voir la notice de l'article provenant de la source Library of Science

A subset S of vertices in a graph G is called a total irredundant set if, for each vertex v in G, v or one of its neighbors has no neighbor in S −v. The total irredundance number, ir(G), is the minimum cardinality of a maximal total irredundant set of G, while the upper total irredundance number, IR(G), is the maximum cardinality of a such set. In this paper we characterize all cubic graphs G with ir_t(G) = IR_t(G) = 2.
Keywords: total domination, total irredundance, cubic
@article{DMGT_2014_34_3_a7,
     author = {Eslahchi, Changiz and Haghi, Shahab and Jafari Rad, Nader},
     title = {Characterization of cubic graphs $G$ with $ir_t(G)=IR_t(G)=2$},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {559--565},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a7/}
}
TY  - JOUR
AU  - Eslahchi, Changiz
AU  - Haghi, Shahab
AU  - Jafari Rad, Nader
TI  - Characterization of cubic graphs $G$ with $ir_t(G)=IR_t(G)=2$
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 559
EP  - 565
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a7/
LA  - en
ID  - DMGT_2014_34_3_a7
ER  - 
%0 Journal Article
%A Eslahchi, Changiz
%A Haghi, Shahab
%A Jafari Rad, Nader
%T Characterization of cubic graphs $G$ with $ir_t(G)=IR_t(G)=2$
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 559-565
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a7/
%G en
%F DMGT_2014_34_3_a7
Eslahchi, Changiz; Haghi, Shahab; Jafari Rad, Nader. Characterization of cubic graphs $G$ with $ir_t(G)=IR_t(G)=2$. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 559-565. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a7/

[1] O. Favaron, T.W. Haynes, S.T. Hedetniemi, M.A. Henning and D.J. Knisley, Total irredundance in graphs, Discrete Math. 256 (2002) 115-127. doi:10.1016/S0012-365X(00)00459-3

[2] T.W. Haynes, S.T. Hedetniemi, M.A. Henning and D.J. Knisley, Stable and unstable graphs with total irredundance number zero, Ars Combin. 61 (2001) 34-46.

[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

[4] S.M. Hedetniemi, S.T. Hedetniemi and D.P. Jacobs, Total irredundance in graphs: theory and algorithms, Ars Combin. 35 (1993) 271-284.

[5] Q.X. Tu and Z.Q. Hu, Structures of regular graphs with total irredundance number zero, Math. Appl. (Wuhan) 18 (2005) 41-44 (in Chinese).