Characterization of cubic graphs $G$ with $ir_t(G)=IR_t(G)=2$
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 559-565
Cet article a éte moissonné depuis la source Library of Science
A subset S of vertices in a graph G is called a total irredundant set if, for each vertex v in G, v or one of its neighbors has no neighbor in S −v. The total irredundance number, ir(G), is the minimum cardinality of a maximal total irredundant set of G, while the upper total irredundance number, IR(G), is the maximum cardinality of a such set. In this paper we characterize all cubic graphs G with ir_t(G) = IR_t(G) = 2.
Keywords:
total domination, total irredundance, cubic
@article{DMGT_2014_34_3_a7,
author = {Eslahchi, Changiz and Haghi, Shahab and Jafari Rad, Nader},
title = {Characterization of cubic graphs $G$ with $ir_t(G)=IR_t(G)=2$},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {559--565},
year = {2014},
volume = {34},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a7/}
}
TY - JOUR AU - Eslahchi, Changiz AU - Haghi, Shahab AU - Jafari Rad, Nader TI - Characterization of cubic graphs $G$ with $ir_t(G)=IR_t(G)=2$ JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 559 EP - 565 VL - 34 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a7/ LA - en ID - DMGT_2014_34_3_a7 ER -
Eslahchi, Changiz; Haghi, Shahab; Jafari Rad, Nader. Characterization of cubic graphs $G$ with $ir_t(G)=IR_t(G)=2$. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 559-565. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a7/
[1] O. Favaron, T.W. Haynes, S.T. Hedetniemi, M.A. Henning and D.J. Knisley, Total irredundance in graphs, Discrete Math. 256 (2002) 115-127. doi:10.1016/S0012-365X(00)00459-3
[2] T.W. Haynes, S.T. Hedetniemi, M.A. Henning and D.J. Knisley, Stable and unstable graphs with total irredundance number zero, Ars Combin. 61 (2001) 34-46.
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
[4] S.M. Hedetniemi, S.T. Hedetniemi and D.P. Jacobs, Total irredundance in graphs: theory and algorithms, Ars Combin. 35 (1993) 271-284.
[5] Q.X. Tu and Z.Q. Hu, Structures of regular graphs with total irredundance number zero, Math. Appl. (Wuhan) 18 (2005) 41-44 (in Chinese).