A reduction of the Graph Reconstruction Conjecture
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 529-537

Voir la notice de l'article provenant de la source Library of Science

A graph is said to be reconstructible if it is determined up to isomorphism from the collection of all its one-vertex deleted unlabeled subgraphs. Reconstruction Conjecture (RC) asserts that all graphs on at least three vertices are reconstructible. In this paper, we prove that interval-regular graphs and some new classes of graphs are reconstructible and show that RC is true if and only if all non-geodetic and non-interval-regular blocks G with diam(G) = 2 or diam(G) = diam(Ḡ) = 3 are reconstructible.
Keywords: reconstruction, diameter, geodetic graph, interval-regular graph
@article{DMGT_2014_34_3_a4,
     author = {Monikandan, S. and Balakumar, J.},
     title = {A reduction of the {Graph} {Reconstruction} {Conjecture}},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {529--537},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a4/}
}
TY  - JOUR
AU  - Monikandan, S.
AU  - Balakumar, J.
TI  - A reduction of the Graph Reconstruction Conjecture
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 529
EP  - 537
VL  - 34
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a4/
LA  - en
ID  - DMGT_2014_34_3_a4
ER  - 
%0 Journal Article
%A Monikandan, S.
%A Balakumar, J.
%T A reduction of the Graph Reconstruction Conjecture
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 529-537
%V 34
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a4/
%G en
%F DMGT_2014_34_3_a4
Monikandan, S.; Balakumar, J. A reduction of the Graph Reconstruction Conjecture. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 529-537. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a4/