On the Erdős-Gyárfás conjecture in claw-free graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 635-640
Voir la notice de l'article provenant de la source Library of Science
The Erdős-Gyárfás conjecture states that every graph with minimum degree at least three has a cycle whose length is a power of 2. Since this conjecture has proven to be far from reach, Hobbs asked if the Erdős-Gyárfás conjecture holds in claw-free graphs. In this paper, we obtain some results on this question, in particular for cubic claw-free graphs.
Keywords:
Erdős-Gyárfás conjecture, claw-free graphs, cycles
@article{DMGT_2014_34_3_a16,
author = {Nowbandegani, Pouria Salehi and Esfandiari, Hossein and Haghighi, Mohammad Hassan Shirdareh and Bibak, Khodakhast},
title = {On the {Erd\H{o}s-Gy\'arf\'as} conjecture in claw-free graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {635--640},
publisher = {mathdoc},
volume = {34},
number = {3},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a16/}
}
TY - JOUR AU - Nowbandegani, Pouria Salehi AU - Esfandiari, Hossein AU - Haghighi, Mohammad Hassan Shirdareh AU - Bibak, Khodakhast TI - On the Erdős-Gyárfás conjecture in claw-free graphs JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 635 EP - 640 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a16/ LA - en ID - DMGT_2014_34_3_a16 ER -
%0 Journal Article %A Nowbandegani, Pouria Salehi %A Esfandiari, Hossein %A Haghighi, Mohammad Hassan Shirdareh %A Bibak, Khodakhast %T On the Erdős-Gyárfás conjecture in claw-free graphs %J Discussiones Mathematicae. Graph Theory %D 2014 %P 635-640 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a16/ %G en %F DMGT_2014_34_3_a16
Nowbandegani, Pouria Salehi; Esfandiari, Hossein; Haghighi, Mohammad Hassan Shirdareh; Bibak, Khodakhast. On the Erdős-Gyárfás conjecture in claw-free graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 635-640. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a16/