Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_3_a15, author = {Rabern, Landon}, title = {A different short proof of {Brook's} theorem}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {633--634}, publisher = {mathdoc}, volume = {34}, number = {3}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a15/} }
Rabern, Landon. A different short proof of Brook's theorem. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 633-634. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a15/
[1] R.L. Brooks, On colouring the nodes of a network, in: Math. Proc. Cambridge Philos. Soc. 37 Cambridge Univ. Press (1941) 194-197.
[2] R. Diestel, Graph Theory (Fourth Ed., Springer Verlag, 2010).
[3] A.D. King, Hitting all maximum cliques with a stable set using lopsided independent transversals, J. Graph Theory 67 (2011) 300-305. doi:10.1002/jgt.20532
[4] A.V. Kostochka, Degree, density, and chromatic number, Metody Diskret. Anal. 35 (1980) 45-70 (in Russian).
[5] L. Lovász, Three short proofs in graph theory, J. Combin. Theory (B) 19 (1975) 269-271. doi:10.1016/0095-8956(75)90089-1
[6] L. Rabern, On hitting all maximum cliques with an independent set, J. Graph Theory 66 (2011) 32-37. doi:10.1002/jgt.20487
[7] H. Tverberg, On Brooks’ theorem and some related results, Math. Scand. 52 (1983) 37-40.