Downhill domination in graphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 603-612
Cet article a éte moissonné depuis la source Library of Science
A path π = (v_1, v_2, . . ., v_k+1) in a graph G = (V,E) is a downhill path if for every i, 1 ≤ i ≤ k, deg(v_i) ≥ deg(v_i+1), where deg(v_i) denotes the degree of vertex v_i ∈ V. The downhill domination number equals the minimum cardinality of a set S ⊆ V having the property that every vertex v ∈ V lies on a downhill path originating from some vertex in S. We investigate downhill domination numbers of graphs and give upper bounds. In particular, we show that the downhill domination number of a graph is at most half its order, and that the downhill domination number of a tree is at most one third its order. We characterize the graphs obtaining each of these bounds.
Keywords:
downhill path, downhill domination number
@article{DMGT_2014_34_3_a12,
author = {Haynes, Teresa W. and Hedetniemi, Stephen T. and Jamieson, Jessie D. and Jamieson, William B.},
title = {Downhill domination in graphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {603--612},
year = {2014},
volume = {34},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a12/}
}
TY - JOUR AU - Haynes, Teresa W. AU - Hedetniemi, Stephen T. AU - Jamieson, Jessie D. AU - Jamieson, William B. TI - Downhill domination in graphs JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 603 EP - 612 VL - 34 IS - 3 UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a12/ LA - en ID - DMGT_2014_34_3_a12 ER -
%0 Journal Article %A Haynes, Teresa W. %A Hedetniemi, Stephen T. %A Jamieson, Jessie D. %A Jamieson, William B. %T Downhill domination in graphs %J Discussiones Mathematicae. Graph Theory %D 2014 %P 603-612 %V 34 %N 3 %U http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a12/ %G en %F DMGT_2014_34_3_a12
Haynes, Teresa W.; Hedetniemi, Stephen T.; Jamieson, Jessie D.; Jamieson, William B. Downhill domination in graphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 3, pp. 603-612. http://geodesic.mathdoc.fr/item/DMGT_2014_34_3_a12/
[1] T.W. Haynes, S.T. Hedetniemi, J. Jamieson and W. Jamieson, Downhill and uphill domination in graphs, submitted for publication (2013).
[2] P. Hall, On representation of subsets, J. London Math. Soc. 10 (1935) 26-30.
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, 1998).
[4] J.D. Hedetniemi, S.M. Hedetniemi, S.T. Hedetniemi and T. Lewis, Analyzing graphs by degrees, AKCE Int. J. Graphs Comb., to appear.
[5] O. Ore, Theory of Graphs (Amer. Math. Soc. Colloq. Publ. 38, 1962).