Voir la notice de l'article provenant de la source Library of Science
@article{DMGT_2014_34_2_a9, author = {Park, Jeongmi and Sano, Yoshio}, title = {The niche graphs of interval orders}, journal = {Discussiones Mathematicae. Graph Theory}, pages = {353--359}, publisher = {mathdoc}, volume = {34}, number = {2}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a9/} }
Park, Jeongmi; Sano, Yoshio. The niche graphs of interval orders. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 353-359. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a9/
[1] C. Cable, K.F. Jones, J.R. Lundgren and S. Seager, Niche graphs, Discrete Appl. Math. 23 (1989) 231-241. doi:10.1016/0166-218X(89)90015-2
[2] J.E. Cohen, Interval graphs and food webs. A finding and a problem, RAND Corporation, Document 17696-PR, Santa Monica, California (1968).
[3] P.C. Fishburn, Interval Orders and Interval Graphs: A Study of Partially Ordered Sets, Wiley-Interscience Series in Discrete Mathematics, A Wiley-Interscience Publication (John Wiley & Sons Ltd., Chichester, 1985).
[4] S.-R. Kim and F.S. Roberts, Competition graphs of semiorders and Conditions C(p) and C∗(p), Ars Combin. 63 (2002) 161-173.
[5] Y. Sano, The competition-common enemy graphs of digraphs satisfying conditions C(p) and C′(p), Congr. Numer. 202 (2010) 187-194.
[6] D.D. Scott, The competition-common enemy graph of a digraph, Discrete Appl. Math. 17 (1987) 269-280. doi:10.1016/0166-218X(87)90030-8