A decomposition of Gallai multigraphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 331-352.

Voir la notice de l'article provenant de la source Library of Science

An edge-colored cycle is rainbow if its edges are colored with distinct colors. A Gallai (multi)graph is a simple, complete, edge-colored (multi)graph lacking rainbow triangles. As has been previously shown for Gallai graphs, we show that Gallai multigraphs admit a simple iterative construction. We then use this structure to prove Ramsey-type results within Gallai colorings. Moreover, we show that Gallai multigraphs give rise to a surprising and highly structured decomposition into directed trees
Keywords: edge coloring, Gallai multigraph
@article{DMGT_2014_34_2_a8,
     author = {Halperin, Alexander and Magnant, Colton and Pula, Kyle},
     title = {A decomposition of {Gallai} multigraphs},
     journal = {Discussiones Mathematicae. Graph Theory},
     pages = {331--352},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a8/}
}
TY  - JOUR
AU  - Halperin, Alexander
AU  - Magnant, Colton
AU  - Pula, Kyle
TI  - A decomposition of Gallai multigraphs
JO  - Discussiones Mathematicae. Graph Theory
PY  - 2014
SP  - 331
EP  - 352
VL  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a8/
LA  - en
ID  - DMGT_2014_34_2_a8
ER  - 
%0 Journal Article
%A Halperin, Alexander
%A Magnant, Colton
%A Pula, Kyle
%T A decomposition of Gallai multigraphs
%J Discussiones Mathematicae. Graph Theory
%D 2014
%P 331-352
%V 34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a8/
%G en
%F DMGT_2014_34_2_a8
Halperin, Alexander; Magnant, Colton; Pula, Kyle. A decomposition of Gallai multigraphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 331-352. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a8/

[1] B. Alexeev, On lengths of rainbow cycles, Electron. J. Combin. 13(1) (2006) #105

[2] R.N. Ball, A. Pultr and P. Vojtěchovský, Colored graphs without colorful cycles, Combinatorica 27 (2007) 407-427. doi:10.1007/s00493-007-2224-6

[3] A. Diwan and D. Mubayi, Turán’s theorem with colors, preprint, 2007.

[4] R.J. Faudree, R. Gould, M. Jacobson and C. Magnant, Ramsey numbers in rainbow triangle free colorings, Australas. J. Combin. 46 (2010) 269-284.

[5] A. Frieze and M. Krivelevich, On rainbow trees and cycles, Electron. J. Combin. 15 (2008) #59.

[6] S. Fujita and C. Magnant, Extensions of Gallai-Ramsey results, J. Graph Theory 70 (2012) 404-426. doi:10.1002/jgt.20622

[7] S. Fujita and C. Magnant, Gallai-Ramsey numbers for cycles, Discrete Math. 311 (2011) 1247-1254. doi:10.1016/j.disc.2009.11.004

[8] S. Fujita, C. Magnant and K. Ozeki, Rainbow generalizations of Ramsey theory: a survey, Graphs Combin. 26 (2010) 1-30. doi:10.1007/s00373-010-0891-3

[9] S. Fujita, C. Magnant and K. Ozeki. Rainbow generalizations of Ramsey theory: a survey, (2011) updated. http://math.georgiasouthern.edu/∼cmagnant

[10] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18 (1967) 25-66. doi:10.1007/BF02020961

[11] A. Gyárfás, G. Sárközy, A. Sebö and S. Selkow, Ramsey-type results for Gallai colorings, J. Graph Theory 64 (2010) 233-243.

[12] A. Gyárfás and G. Simonyi, Edge colorings of complete graphs without tricolored triangles, J. Graph Theory 46 (2004) 211-216. doi:10.1002/jgt.20001

[13] P. Vojtěchovský, Periods in missing lengths of rainbow cycles, J. Graph Theory 61 (2009) 98-110. doi:10.1002/jgt.20371