A decomposition of Gallai multigraphs
Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 331-352
Voir la notice de l'article provenant de la source Library of Science
An edge-colored cycle is rainbow if its edges are colored with distinct colors. A Gallai (multi)graph is a simple, complete, edge-colored (multi)graph lacking rainbow triangles. As has been previously shown for Gallai graphs, we show that Gallai multigraphs admit a simple iterative construction. We then use this structure to prove Ramsey-type results within Gallai colorings. Moreover, we show that Gallai multigraphs give rise to a surprising and highly structured decomposition into directed trees
Keywords:
edge coloring, Gallai multigraph
@article{DMGT_2014_34_2_a8,
author = {Halperin, Alexander and Magnant, Colton and Pula, Kyle},
title = {A decomposition of {Gallai} multigraphs},
journal = {Discussiones Mathematicae. Graph Theory},
pages = {331--352},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a8/}
}
TY - JOUR AU - Halperin, Alexander AU - Magnant, Colton AU - Pula, Kyle TI - A decomposition of Gallai multigraphs JO - Discussiones Mathematicae. Graph Theory PY - 2014 SP - 331 EP - 352 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a8/ LA - en ID - DMGT_2014_34_2_a8 ER -
Halperin, Alexander; Magnant, Colton; Pula, Kyle. A decomposition of Gallai multigraphs. Discussiones Mathematicae. Graph Theory, Tome 34 (2014) no. 2, pp. 331-352. http://geodesic.mathdoc.fr/item/DMGT_2014_34_2_a8/